Suppr超能文献

基于脑电图信号的阿尔茨海默病和轻度认知障碍疾病自动诊断深度学习技术:过去十年(2013 - 2024年)的综合综述

Deep learning techniques for automated Alzheimer's and mild cognitive impairment disease using EEG signals: A comprehensive review of the last decade (2013 - 2024).

作者信息

Acharya Madhav, Deo Ravinesh C, Tao Xiaohui, Barua Prabal Datta, Devi Aruna, Atmakuru Anirudh, Tan Ru-San

机构信息

School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield Central, QLD 4300, Australia.

School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba QLD 4350, Australia.

出版信息

Comput Methods Programs Biomed. 2025 Feb;259:108506. doi: 10.1016/j.cmpb.2024.108506. Epub 2024 Nov 12.

Abstract

BACKGROUND AND OBJECTIVES

Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD) are progressive neurological disorders that significantly impair the cognitive functions, memory, and daily activities. They affect millions of individuals worldwide, posing a significant challenge for its diagnosis and management, leading to detrimental impacts on patients' quality of lives and increased burden on caregivers. Hence, early detection of MCI and AD is crucial for timely intervention and effective disease management.

METHODS

This study presents a comprehensive systematic review focusing on the applications of deep learning in detecting MCI and AD using electroencephalogram (EEG) signals. Through a rigorous literature screening process based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the research has investigated 74 different papers in detail to analyze the different approaches used to detect MCI and AD neurological disorders.

RESULTS

The findings of this study stand out as the first to deal with the classification of dual MCI and AD (MCI+AD) using EEG signals. This unique approach has enabled us to highlight the state-of-the-art high-performing models, specifically focusing on deep learning while examining their strengths and limitations in detecting the MCI, AD, and the MCI+AD comorbidity situations.

CONCLUSION

The present study has not only identified the current limitations in deep learning area for MCI and AD detection but also proposes specific future directions to address these neurological disorders by implement best practice deep learning approaches. Our main goal is to offer insights as references for future research encouraging the development of deep learning techniques in early detection and diagnosis of MCI and AD neurological disorders. By recommending the most effective deep learning tools, we have also provided a benchmark for future research, with clear implications for the practical use of these techniques in healthcare.

摘要

背景与目的

轻度认知障碍(MCI)和阿尔茨海默病(AD)是渐进性神经疾病,会显著损害认知功能、记忆力和日常活动能力。它们影响着全球数百万人,对其诊断和管理构成重大挑战,给患者的生活质量带来不利影响,并增加了护理人员的负担。因此,早期检测MCI和AD对于及时干预和有效管理疾病至关重要。

方法

本研究进行了一项全面的系统综述,重点关注深度学习在利用脑电图(EEG)信号检测MCI和AD中的应用。通过基于系统评价和Meta分析的首选报告项目(PRISMA)指南进行严格的文献筛选过程,该研究详细调查了74篇不同的论文,以分析用于检测MCI和AD神经疾病的不同方法。

结果

本研究的结果首次涉及使用EEG信号对双重MCI和AD(MCI+AD)进行分类。这种独特的方法使我们能够突出最先进的高性能模型,特别关注深度学习,同时研究它们在检测MCI、AD以及MCI+AD合并症情况方面的优势和局限性。

结论

本研究不仅确定了深度学习领域在MCI和AD检测方面的当前局限性,还提出了通过实施最佳实践深度学习方法来解决这些神经疾病的具体未来方向。我们的主要目标是提供见解作为未来研究的参考,鼓励在MCI和AD神经疾病的早期检测和诊断中发展深度学习技术。通过推荐最有效的深度学习工具,我们还为未来研究提供了一个基准,对这些技术在医疗保健中的实际应用具有明确的启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验