Suppr超能文献

ONDSA:一种基于高斯图形模型的测试框架,用于对多个组学网络进行差异和相似性分析。

ONDSA: a testing framework based on Gaussian graphical models for differential and similarity analysis of multiple omics networks.

机构信息

Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Crosstown, 3rd floor, Boston, MA 02218, United States.

Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, 73 Mount Wayte Avenue, Framingham, MA 01702, United States.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae610.

Abstract

The Gaussian graphical model (GGM) is a statistical network approach that represents conditional dependencies among components, enabling a comprehensive exploration of disease mechanisms using high-throughput multi-omics data. Analyzing differential and similar structures in biological networks across multiple clinical conditions can reveal significant biological pathways and interactions associated with disease onset and progression. However, most existing methods for estimating group differences in sparse GGMs only apply to comparisons between two groups, and the challenging problem of multiple testing across multiple GGMs persists. This limitation hinders the ability to uncover complex biological insights that arise from comparing multiple conditions simultaneously. To address these challenges, we propose the Omics Networks Differential and Similarity Analysis (ONDSA) framework, specifically designed for continuous omics data. ONDSA tests for structural differences and similarities across multiple groups, effectively controlling the false discovery rate (FDR) at a desired level. Our approach focuses on entry-wise comparisons of precision matrices across groups, introducing two test statistics to sequentially estimate structural differences and similarities while adjusting for correlated effects in FDR control procedures. We show via comprehensive simulations that ONDSA outperforms existing methods under a range of graph structures and is a valuable tool for joint comparisons of multiple GGMs. We also illustrate our method through the detection of neuroinflammatory pathways in a multi-omics dataset from the Framingham Heart Study Offspring cohort, involving three apolipoprotein E genotype groups. It highlights ONDSA's ability to provide a more holistic view of biological interactions and disease mechanisms through multi-omics data integration.

摘要

高斯图形模型(GGM)是一种统计网络方法,它表示组件之间的条件依赖性,使我们能够使用高通量多组学数据全面探索疾病机制。分析多个临床条件下生物网络中的差异和相似结构可以揭示与疾病发生和进展相关的重要生物学途径和相互作用。然而,大多数用于估计稀疏 GGM 中组差异的现有方法仅适用于两组之间的比较,而多个 GGM 之间的多重检验仍然是一个具有挑战性的问题。这一限制阻碍了从同时比较多个条件中发现复杂生物学见解的能力。为了解决这些挑战,我们提出了 Omics Networks Differential and Similarity Analysis (ONDSA) 框架,专门针对连续组学数据设计。ONDSA 测试多个组之间的结构差异和相似性,有效地将假发现率(FDR)控制在所需水平。我们的方法侧重于跨组比较精度矩阵的逐位比较,引入了两个测试统计量,以便在 FDR 控制过程中调整相关效应,依次估计结构差异和相似性。我们通过全面的模拟表明,ONDSA 在一系列图结构下优于现有方法,是联合比较多个 GGM 的有价值工具。我们还通过检测 Framingham Heart Study Offspring 队列的多组学数据集的神经炎症途径来说明我们的方法,该数据集涉及三个载脂蛋白 E 基因型组。它突出了 ONDSA 通过多组学数据集成提供更全面的生物学相互作用和疾病机制视图的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e8f/11586129/1c9768b8438f/bbae610f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验