Suppr超能文献

关于空间和时间数据的高斯图形模型的联合估计

On joint estimation of Gaussian graphical models for spatial and temporal data.

作者信息

Lin Zhixiang, Wang Tao, Yang Can, Zhao Hongyu

机构信息

Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, U.S.A.

Department of Statistics, Stanford University, Stanford, California, U.S.A.

出版信息

Biometrics. 2017 Sep;73(3):769-779. doi: 10.1111/biom.12650. Epub 2017 Jan 18.

Abstract

In this article, we first propose a Bayesian neighborhood selection method to estimate Gaussian Graphical Models (GGMs). We show the graph selection consistency of this method in the sense that the posterior probability of the true model converges to one. When there are multiple groups of data available, instead of estimating the networks independently for each group, joint estimation of the networks may utilize the shared information among groups and lead to improved estimation for each individual network. Our method is extended to jointly estimate GGMs in multiple groups of data with complex structures, including spatial data, temporal data, and data with both spatial and temporal structures. Markov random field (MRF) models are used to efficiently incorporate the complex data structures. We develop and implement an efficient algorithm for statistical inference that enables parallel computing. Simulation studies suggest that our approach achieves better accuracy in network estimation compared with methods not incorporating spatial and temporal dependencies when there are shared structures among the networks, and that it performs comparably well otherwise. Finally, we illustrate our method using the human brain gene expression microarray dataset, where the expression levels of genes are measured in different brain regions across multiple time periods.

摘要

在本文中,我们首先提出一种贝叶斯邻域选择方法来估计高斯图形模型(GGMs)。我们证明了该方法在真实模型的后验概率收敛到1的意义下的图选择一致性。当有多组数据可用时,不是为每组数据独立估计网络,而是联合估计网络可以利用组间的共享信息,并导致对每个单独网络的估计得到改进。我们的方法被扩展到联合估计具有复杂结构的多组数据中的GGMs,包括空间数据、时间数据以及具有空间和时间结构的数据。马尔可夫随机场(MRF)模型被用于有效地纳入复杂的数据结构。我们开发并实现了一种用于统计推断的高效算法,该算法支持并行计算。模拟研究表明,当网络之间存在共享结构时,与不纳入空间和时间依赖性的方法相比,我们的方法在网络估计中实现了更高的准确性,否则表现相当。最后,我们使用人类大脑基因表达微阵列数据集来说明我们的方法,其中在多个时间段内测量不同脑区的基因表达水平。

相似文献

6
Bayesian Inference of Multiple Gaussian Graphical Models.多个高斯图形模型的贝叶斯推断
J Am Stat Assoc. 2015 Mar 1;110(509):159-174. doi: 10.1080/01621459.2014.896806.

引用本文的文献

1
Covariate-Assisted Bayesian Graph Learning for Heterogeneous Data.用于异构数据的协变量辅助贝叶斯图学习
J Am Stat Assoc. 2024;119(547):1985-1999. doi: 10.1080/01621459.2023.2233744. Epub 2023 Sep 6.
7
Bayesian Joint Modeling of Multiple Brain Functional Networks.多个脑功能网络的贝叶斯联合建模
J Am Stat Assoc. 2021;116(534):518-530. doi: 10.1080/01621459.2020.1796357. Epub 2020 Sep 1.

本文引用的文献

3
Gene regulation network inference with joint sparse Gaussian graphical models.基于联合稀疏高斯图形模型的基因调控网络推断
J Comput Graph Stat. 2015 Oct 1;24(4):954-974. doi: 10.1080/10618600.2014.956876. Epub 2014 Sep 17.
4
Bayesian Inference of Multiple Gaussian Graphical Models.多个高斯图形模型的贝叶斯推断
J Am Stat Assoc. 2015 Mar 1;110(509):159-174. doi: 10.1080/01621459.2014.896806.
8
Joint estimation of multiple graphical models.多个图形模型的联合估计
Biometrika. 2011 Mar;98(1):1-15. doi: 10.1093/biomet/asq060. Epub 2011 Feb 9.
9
Spatio-temporal transcriptome of the human brain.人类大脑的时空转录组。
Nature. 2011 Oct 26;478(7370):483-9. doi: 10.1038/nature10523.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验