Lin Zhixiang, Wang Tao, Yang Can, Zhao Hongyu
Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, U.S.A.
Department of Statistics, Stanford University, Stanford, California, U.S.A.
Biometrics. 2017 Sep;73(3):769-779. doi: 10.1111/biom.12650. Epub 2017 Jan 18.
In this article, we first propose a Bayesian neighborhood selection method to estimate Gaussian Graphical Models (GGMs). We show the graph selection consistency of this method in the sense that the posterior probability of the true model converges to one. When there are multiple groups of data available, instead of estimating the networks independently for each group, joint estimation of the networks may utilize the shared information among groups and lead to improved estimation for each individual network. Our method is extended to jointly estimate GGMs in multiple groups of data with complex structures, including spatial data, temporal data, and data with both spatial and temporal structures. Markov random field (MRF) models are used to efficiently incorporate the complex data structures. We develop and implement an efficient algorithm for statistical inference that enables parallel computing. Simulation studies suggest that our approach achieves better accuracy in network estimation compared with methods not incorporating spatial and temporal dependencies when there are shared structures among the networks, and that it performs comparably well otherwise. Finally, we illustrate our method using the human brain gene expression microarray dataset, where the expression levels of genes are measured in different brain regions across multiple time periods.
在本文中,我们首先提出一种贝叶斯邻域选择方法来估计高斯图形模型(GGMs)。我们证明了该方法在真实模型的后验概率收敛到1的意义下的图选择一致性。当有多组数据可用时,不是为每组数据独立估计网络,而是联合估计网络可以利用组间的共享信息,并导致对每个单独网络的估计得到改进。我们的方法被扩展到联合估计具有复杂结构的多组数据中的GGMs,包括空间数据、时间数据以及具有空间和时间结构的数据。马尔可夫随机场(MRF)模型被用于有效地纳入复杂的数据结构。我们开发并实现了一种用于统计推断的高效算法,该算法支持并行计算。模拟研究表明,当网络之间存在共享结构时,与不纳入空间和时间依赖性的方法相比,我们的方法在网络估计中实现了更高的准确性,否则表现相当。最后,我们使用人类大脑基因表达微阵列数据集来说明我们的方法,其中在多个时间段内测量不同脑区的基因表达水平。