Suppr超能文献

基于高斯图模型推断的差异网络分析的统计检验

A Statistical Test for Differential Network Analysis Based on Inference of Gaussian Graphical Model.

机构信息

Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA.

Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA.

出版信息

Sci Rep. 2019 Jul 26;9(1):10863. doi: 10.1038/s41598-019-47362-7.

Abstract

Differential network analysis investigates how the network of connected genes changes from one condition to another and has become a prevalent tool to provide a deeper and more comprehensive understanding of the molecular etiology of complex diseases. Based on the asymptotically normal estimation of large Gaussian graphical model (GGM) in the high-dimensional setting, we developed a computationally efficient test for differential network analysis through testing the equality of two precision matrices, which summarize the conditional dependence network structures of the genes. Additionally, we applied a multiple testing procedure to infer the differential network structure with false discovery rate (FDR) control. Through extensive simulation studies with different combinations of parameters including sample size, number of vertices, level of heterogeneity and graph structure, we demonstrated that our method performed much better than the current available methods in terms of accuracy and computational time. In real data analysis on lung adenocarcinoma, we revealed a differential network with 3503 nodes and 2550 edges, which consisted of 50 clusters with an FDR threshold at 0.05. Many of the top gene pairs in the differential network have been reported relevant to human cancers. Our method represents a powerful tool of network analysis for high-dimensional biological data.

摘要

差异网络分析研究连接基因的网络如何从一种状态转变为另一种状态,已成为深入全面了解复杂疾病分子病因的流行工具。基于高维环境中大型高斯图形模型(GGM)的渐近正态估计,我们通过检验两个精度矩阵的相等性,开发了一种用于差异网络分析的计算高效检验方法,这两个精度矩阵总结了基因的条件依赖网络结构。此外,我们应用多重检验程序,通过控制错误发现率(FDR)推断差异网络结构。通过对不同参数组合(包括样本量、顶点数量、异质性水平和图形结构)的广泛模拟研究,我们证明了我们的方法在准确性和计算时间方面都优于当前可用的方法。在肺腺癌的实际数据分析中,我们揭示了一个包含 3503 个节点和 2550 个边的差异网络,该网络由 50 个具有 FDR 阈值为 0.05 的聚类组成。差异网络中的许多顶级基因对已被报道与人类癌症有关。我们的方法代表了一种用于高维生物数据的网络分析的强大工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd67/6659630/09501b4a779f/41598_2019_47362_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验