Suppr超能文献

Zfp260 编舞骨骼干细胞早期成骨谱系承诺。

Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells.

机构信息

Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China.

Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China.

出版信息

Nat Commun. 2024 Nov 24;15(1):10186. doi: 10.1038/s41467-024-54640-0.

Abstract

The initial fine-tuning processes are crucial for successful bone regeneration, as they guide skeletal stem cells through progenitor differentiation toward osteo- or chondrogenic fate. While fate determination processes are well-documented, the mechanisms preceding progenitor commitment remain poorly understood. Here, we identified a transcription factor, Zfp260, as pivotal for stem cell maturation into progenitors and directing osteogenic differentiation. Zfp260 is markedly up-regulated as cells transition from stem to progenitor stages; its dysfunction causes lineage arrest at the progenitor stage, impairing bone repair. Zfp260 is required for maintaining chromatin accessibility and regulates Runx2 expression by forming super-enhancer complexes. Furthermore, the PKCα kinase phosphorylates Zfp260 at residues Y173, S182, and S197, which are essential for its functional activity. Mutations at these residues significantly impair its functionality. These findings position Zfp260 as a vital factor bridging stem cell activation with progenitor cell fate determination, unveiling a element fundamental to successful bone regeneration.

摘要

初始的精细调整过程对于成功的骨再生至关重要,因为它们引导骨骼干细胞通过祖细胞分化向成骨或软骨细胞命运发展。虽然命运决定过程已有详细记录,但祖细胞承诺之前的机制仍知之甚少。在这里,我们确定了一个转录因子 Zfp260,它是干细胞成熟为祖细胞并指导成骨分化的关键。Zfp260 在细胞从干细胞向祖细胞阶段过渡时明显上调;其功能障碍导致谱系在祖细胞阶段停滞,从而损害骨修复。Zfp260 对于维持染色质可及性以及通过形成超级增强子复合物调节 Runx2 表达是必需的。此外,PKCα 激酶在 Y173、S182 和 S197 残基处磷酸化 Zfp260,这些残基对于其功能活性是必需的。这些残基的突变显著损害了其功能。这些发现将 Zfp260 定位为连接干细胞激活与祖细胞命运决定的重要因素,揭示了成功骨再生的基本要素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3be1/11586402/4786bac6799e/41467_2024_54640_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验