Suppr超能文献

辅音混淆背后感知结构的离散表示。

Discrete representation of perceptual structure underlying consonant confusions.

作者信息

Soli S D, Arabie P, Carroll J D

出版信息

J Acoust Soc Am. 1986 Mar;79(3):826-37. doi: 10.1121/1.393473.

Abstract

The perceptual representation of speech is generally assumed to be discrete rather than continuous, pointing to the need for general discrete analytic models to represent observed perceptual similarities among speech sounds. The INDCLUS (INdividual Differences CLUStering) model and algorithm [J.D. Carroll and P. Arabie, Psychometrika 48, 157-169 (1983)] can provide this generality, representing symmetric three-way similarity data (stimuli X stimuli X conditions) as an additive combination of overlapping, and generally not hierarchial, clusters whose weights (which are numerical values gauging the importance of the clusters) vary both as a function of the cluster and condition being considered. INDCLUS was used to obtain a discrete representation of underlying perceptual structure in the Miller and Nicely consonant confusion data [G.A. Miller and P.E. Nicely, J. Acoust. Soc. Am. 27, 338-352 (1955)]. A 14-cluster solution accounted for 82.9% of total variance across the 17 listening conditions. The cluster composition and the variations in cluster weights as a function of stimulus degradation were interpreted in terms of the common and unique perceptual attributes of the consonants within each cluster. Low-pass filtering and noise masking selectively degraded unique attributes, especially the cues for place of articulation, while high-pass filtering degraded both unique and common attributes. The clustering results revealed that perceptual similarities among consonants are accurately modeled by additive combinations of their specific and discrete acoustic attributes whose weights are determined by the nature of the stimulus degradation.

摘要

言语的感知表征通常被认为是离散的而非连续的,这表明需要通用的离散分析模型来表征语音之间观察到的感知相似性。INDCLUS(个体差异聚类)模型和算法[J.D.卡罗尔和P.阿拉比,《心理测量学》48,157 - 169(1983)]可以提供这种通用性,将对称的三向相似性数据(刺激×刺激×条件)表示为重叠且通常非层次化的聚类的加性组合,其权重(衡量聚类重要性的数值)随所考虑的聚类和条件而变化。INDCLUS被用于在米勒和尼斯利的辅音混淆数据[G.A.米勒和P.E.尼斯利,《美国声学学会杂志》27,338 - 352(1955)]中获得潜在感知结构的离散表征。一个14聚类的解决方案解释了17种听力条件下总方差的82.9%。根据每个聚类中辅音的共同和独特感知属性,对聚类组成以及聚类权重随刺激退化的变化进行了解释。低通滤波和噪声掩蔽选择性地降低了独特属性,特别是发音部位的线索,而高通滤波则降低了独特和共同属性。聚类结果表明,辅音之间的感知相似性可以通过其特定和离散声学属性的加性组合准确建模,其权重由刺激退化的性质决定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验