Suppr超能文献

用于预测RNA三级结构的三种计算工具的比较

Comparison of Three Computational Tools for the Prediction of RNA Tertiary Structures.

作者信息

Mao Frank Yiyang, Tu Mei-Juan, Traber Gavin McAllister, Yu Ai-Ming

机构信息

Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, 2700 Stockton Blvd, Sacramento, CA 95817, USA.

出版信息

Noncoding RNA. 2024 Nov 8;10(6):55. doi: 10.3390/ncrna10060055.

Abstract

Understanding the structures of noncoding RNAs (ncRNAs) is important for the development of RNA-based therapeutics. There are inherent challenges in employing current experimental techniques to determine the tertiary (3D) structures of RNAs with high complexity and flexibility in folding, which makes computational methods indispensable. In this study, we compared the utilities of three advanced computational tools, namely RNAComposer, Rosetta FARFAR2, and the latest AlphaFold 3, to predict the 3D structures of various forms of RNAs, including the small interfering RNA drug, nedosiran, and the novel bioengineered RNA (BioRNA) molecule showing therapeutic potential. Our results showed that, while RNAComposer offered a malachite green aptamer 3D structure closer to its crystal structure, the performances of RNAComposer and Rosetta FARFAR2 largely depend upon the secondary structures inputted, and Rosetta FARFAR2 predictions might not even recapitulate the typical, inverted "L" shape tRNA 3D structure. Overall, AlphaFold 3, integrating molecular dynamics principles into its deep learning framework, directly predicted RNA 3D structures from RNA primary sequence inputs, even accepting several common post-transcriptional modifications, which closely aligned with the experimentally determined structures. However, there were significant discrepancies among three computational tools in predicting the distal loop of human pre-microRNA and larger BioRNA (tRNA fused pre-miRNA) molecules whose 3D structures have not been characterized experimentally. While computational predictions show considerable promise, their notable strengths and limitations emphasize the needs for experimental validation of predictions besides characterization of more RNA 3D structures.

摘要

了解非编码RNA(ncRNA)的结构对于基于RNA的治疗方法的开发至关重要。采用当前的实验技术来确定具有高复杂性和折叠灵活性的RNA的三级(3D)结构存在内在挑战,这使得计算方法不可或缺。在本研究中,我们比较了三种先进的计算工具,即RNAComposer、Rosetta FARFAR2和最新的AlphaFold 3,用于预测各种形式RNA的3D结构,包括小干扰RNA药物奈多昔蓝,以及显示出治疗潜力的新型生物工程RNA(BioRNA)分子。我们的结果表明,虽然RNAComposer提供的孔雀石绿适体3D结构更接近其晶体结构,但RNAComposer和Rosetta FARFAR2的性能在很大程度上取决于输入的二级结构,并且Rosetta FARFAR2的预测甚至可能无法重现典型的倒“L”形tRNA 3D结构。总体而言,AlphaFold 3将分子动力学原理整合到其深度学习框架中,直接从RNA一级序列输入预测RNA 3D结构,甚至接受几种常见的转录后修饰,这与实验确定的结构紧密对齐。然而,在预测人pre - 微小RNA的远端环和3D结构尚未通过实验表征的更大的BioRNA(tRNA融合pre - miRNA)分子时,三种计算工具之间存在显著差异。虽然计算预测显示出相当大的前景,但其显著的优势和局限性强调了除了表征更多RNA 3D结构之外,还需要对预测进行实验验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efba/11587127/7c1c301a0980/ncrna-10-00055-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验