Suppr超能文献

基于人工智能图像识别的临床重要物种自动识别:概念验证研究。

Automatic identification of clinically important species by artificial intelligence-based image recognition: proof-of-concept study.

作者信息

Tsang Chi-Ching, Zhao Chenyang, Liu Yueh, Lin Ken P K, Tang James Y M, Cheng Kar-On, Chow Franklin W N, Yao Weiming, Chan Ka-Fai, Poon Sharon N L, Wong Kelly Y C, Zhou Lianyi, Mak Oscar T N, Lee Jeremy C Y, Zhao Suhui, Ngan Antonio H Y, Wu Alan K L, Fung Kitty S C, Que Tak-Lun, Teng Jade L L, Schnieders Dirk, Yiu Siu-Ming, Lau Susanna K P, Woo Patrick C Y

机构信息

School of Medical and Health Sciences, Tung Wah College, Homantin, Hong Kong.

Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.

出版信息

Emerg Microbes Infect. 2025 Dec;14(1):2434573. doi: 10.1080/22221751.2024.2434573. Epub 2024 Dec 9.

Abstract

While morphological examination is the most widely used for identification in clinical laboratories, PCR-sequencing and MALDI-TOF MS are emerging technologies in more financially-competent laboratories. However, mycological expertise, molecular biologists and/or expensive equipment are needed for these. Recently, artificial intelligence (AI), especially image recognition, is being increasingly employed in medicine for fast and automated disease diagnosis. We explored the potential utility of AI in identifying species. In this proof-of-concept study, using 2813, 2814 and 1240 images from four clinically important species for training, validation and testing, respectively; the performances and accuracies of automatic identification using colonial images by three different convolutional neural networks were evaluated. Results demonstrated that ResNet-18 outperformed Inception-v3 and DenseNet-121 and is the best algorithm of choice because it made the fewest misidentifications ( = 8) and possessed the highest testing accuracy (99.35%). Images showing more unique morphological features were more accurately identified. AI-based image recognition using colonial images is a promising technology for identification. Given its short turn-around-time, minimal demand of expertise, low reagent/equipment costs and user-friendliness, it has the potential to serve as a routine laboratory diagnostic tool after the database is further expanded.

摘要

虽然形态学检查是临床实验室中最广泛用于鉴定的方法,但聚合酶链反应测序和基质辅助激光解吸电离飞行时间质谱是在经济条件较好的实验室中新兴的技术。然而,这些技术需要真菌学专业知识、分子生物学家和/或昂贵的设备。最近,人工智能(AI),尤其是图像识别,在医学中越来越多地用于快速和自动化的疾病诊断。我们探讨了人工智能在物种鉴定中的潜在用途。在这项概念验证研究中,分别使用来自四种临床重要物种的2813张、2814张和1240张图像进行训练、验证和测试;评估了三种不同卷积神经网络使用菌落图像进行自动识别的性能和准确性。结果表明,ResNet-18的表现优于Inception-v3和DenseNet-121,是最佳选择算法,因为它的错误识别最少(=8),测试准确率最高(99.35%)。显示出更独特形态特征的图像被更准确地识别。使用菌落图像的基于人工智能的图像识别是一种很有前途的鉴定技术。鉴于其周转时间短、对专业知识的需求最小、试剂/设备成本低且用户友好,在数据库进一步扩展后,它有潜力成为一种常规的实验室诊断工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0812/11632928/3248e0838ff3/TEMI_A_2434573_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验