Davri Athena, Birbas Effrosyni, Kanavos Theofilos, Ntritsos Georgios, Giannakeas Nikolaos, Tzallas Alexandros T, Batistatou Anna
Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece.
Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
Cancers (Basel). 2023 Aug 5;15(15):3981. doi: 10.3390/cancers15153981.
Lung cancer is one of the deadliest cancers worldwide, with a high incidence rate, especially in tobacco smokers. Lung cancer accurate diagnosis is based on distinct histological patterns combined with molecular data for personalized treatment. Precise lung cancer classification from a single H&E slide can be challenging for a pathologist, requiring most of the time additional histochemical and special immunohistochemical stains for the final pathology report. According to WHO, small biopsy and cytology specimens are the available materials for about 70% of lung cancer patients with advanced-stage unresectable disease. Thus, the limited available diagnostic material necessitates its optimal management and processing for the completion of diagnosis and predictive testing according to the published guidelines. During the new era of Digital Pathology, Deep Learning offers the potential for lung cancer interpretation to assist pathologists' routine practice. Herein, we systematically review the current Artificial Intelligence-based approaches using histological and cytological images of lung cancer. Most of the published literature centered on the distinction between lung adenocarcinoma, lung squamous cell carcinoma, and small cell lung carcinoma, reflecting the realistic pathologist's routine. Furthermore, several studies developed algorithms for lung adenocarcinoma predominant architectural pattern determination, prognosis prediction, mutational status characterization, and PD-L1 expression status estimation.
肺癌是全球最致命的癌症之一,发病率很高,尤其是在吸烟者中。肺癌的准确诊断基于独特的组织学模式并结合分子数据以进行个性化治疗。对于病理学家而言,仅从一张苏木精-伊红(H&E)切片精确诊断肺癌可能具有挑战性,大多数情况下最终病理报告需要额外的组织化学和特殊免疫组织化学染色。根据世界卫生组织(WHO)的数据,对于约70%的晚期不可切除肺癌患者,小活检和细胞学标本是可用的材料。因此,有限的可用诊断材料需要根据已发布的指南对其进行优化管理和处理,以完成诊断和预测性检测。在数字病理学的新时代,深度学习为肺癌解读提供了潜力,以辅助病理学家的日常工作。在此,我们系统地回顾了当前使用肺癌组织学和细胞学图像的基于人工智能的方法。大多数已发表的文献集中在肺腺癌、肺鳞状细胞癌和小细胞肺癌之间的区分上,反映了病理学家现实中的日常工作。此外,一些研究开发了用于确定肺腺癌主要结构模式、预测预后、表征突变状态以及估计程序性死亡受体配体1(PD-L1)表达状态的算法。