Suppr超能文献

用于分批和流动生物催化过程的固定化酶开发的进展与挑战

Advances and Challenges in the Development of Immobilized Enzymes for Batch and Flow Biocatalyzed Processes.

作者信息

Patti Stefania, Magrini Alunno Ilaria, Pedroni Sara, Riva Sergio, Ferrandi Erica Elisa, Monti Daniela

机构信息

Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), CNR, Via Bianco 9, 20131, Milano, Italy.

Department of Pharmaceutical Sciences, University of, Milan, Via Mangiagalli 25, 20133, Milano, Italy.

出版信息

ChemSusChem. 2025 Apr 14;18(8):e202402007. doi: 10.1002/cssc.202402007. Epub 2024 Dec 3.

Abstract

The development of immobilized enzymes both for batch and continuous flow biocatalytic processes has gained significant traction in recent years, driven by the need for cost-effective and sustainable production methods in the fine chemicals and pharmaceutical industries. Enzyme immobilization not only enables the recycling of biocatalysts but also streamlines downstream processing, significantly reducing the cost and environmental impact of biotransformations. This review explores recent advancements in enzyme immobilization techniques, covering both carrier-free methods, entrapment strategies and support-based approaches. At this regard, the selection of suitable materials for enzyme immobilization is examined, highlighting the advantages and challenges associated with inorganic, natural, and synthetic organic carriers. Novel opportunities coming from innovative binding strategies, such as genetic fusion technologies, for the preparation of heterogeneous biocatalysts with enhanced activity and stability will be discussed as well. This review underscores the need for ongoing research to address current limitations and optimize immobilization strategies for industrial applications.

摘要

近年来,由于精细化工和制药行业对经济高效且可持续的生产方法的需求,用于间歇和连续流动生物催化过程的固定化酶的开发受到了广泛关注。酶固定化不仅能够实现生物催化剂的循环利用,还简化了下游处理过程,显著降低了生物转化的成本和环境影响。本综述探讨了酶固定化技术的最新进展,涵盖了无载体方法、包埋策略和基于载体的方法。在此方面,研究了用于酶固定化的合适材料的选择,突出了与无机、天然和合成有机载体相关的优点和挑战。还将讨论来自创新结合策略(如基因融合技术)的新机遇,这些策略用于制备具有更高活性和稳定性的非均相生物催化剂。本综述强调了持续研究以解决当前局限性并优化工业应用固定化策略的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc50/11997919/2868ea2bef77/CSSC-18-e202402007-g008.jpg

相似文献

1
Advances and Challenges in the Development of Immobilized Enzymes for Batch and Flow Biocatalyzed Processes.
ChemSusChem. 2025 Apr 14;18(8):e202402007. doi: 10.1002/cssc.202402007. Epub 2024 Dec 3.
2
Designing multifunctional biocatalytic cascade system by multi-enzyme co-immobilization on biopolymers and nanostructured materials.
Int J Biol Macromol. 2023 Feb 1;227:535-550. doi: 10.1016/j.ijbiomac.2022.12.074. Epub 2022 Dec 11.
3
A Comprehensive Guide to Enzyme Immobilization: All You Need to Know.
Molecules. 2025 Feb 18;30(4):939. doi: 10.3390/molecules30040939.
4
Revolutionizing biocatalysis: A review on innovative design and applications of enzyme-immobilized microfluidic devices.
Int J Biol Macromol. 2024 Nov;281(Pt 1):136193. doi: 10.1016/j.ijbiomac.2024.136193. Epub 2024 Oct 1.
5
Trends in the development of innovative nanobiocatalysts and their application in biocatalytic transformations.
Biotechnol Adv. 2021 Nov 1;51:107738. doi: 10.1016/j.biotechadv.2021.107738. Epub 2021 Mar 26.
6
Lignin: The green powerhouse for enzyme immobilization in biocatalysis and biosensing.
Int J Biol Macromol. 2024 Nov;280(Pt 2):135940. doi: 10.1016/j.ijbiomac.2024.135940. Epub 2024 Sep 23.
7
Continuous flow biocatalysis.
Chem Soc Rev. 2018 Jul 30;47(15):5891-5918. doi: 10.1039/c7cs00906b.
8
Advances in aldo-keto reductases immobilization for biocatalytic synthesis of chiral alcohols.
Int J Biol Macromol. 2024 Aug;274(Pt 1):133264. doi: 10.1016/j.ijbiomac.2024.133264. Epub 2024 Jun 18.
9
A novel one-step expression and immobilization method for the production of biocatalytic preparations.
Microb Cell Fact. 2015 Nov 14;14:180. doi: 10.1186/s12934-015-0371-9.
10
Immobilized biocatalytic process development and potential application in membrane separation: a review.
Crit Rev Biotechnol. 2016;36(1):43-58. doi: 10.3109/07388551.2014.923373. Epub 2014 Jul 15.

引用本文的文献

1
Nanoengineered Enzyme Immobilization: Toward Biomedical, Orthopedic, and Biofuel Applications.
ACS Omega. 2025 Aug 5;10(32):35434-35450. doi: 10.1021/acsomega.5c05589. eCollection 2025 Aug 19.
2
Recent Advances in Enzymatic Biofuel Cells to Power Up Wearable and Implantable Biosensors.
Biosensors (Basel). 2025 Mar 28;15(4):218. doi: 10.3390/bios15040218.

本文引用的文献

3
Covalent Organic Frameworks for the Purification of Recombinant Enzymes and Heterogeneous Biocatalysis.
J Am Chem Soc. 2024 Jan 10;146(1):858-867. doi: 10.1021/jacs.3c11169. Epub 2023 Dec 30.
4
Region-Directed Enzyme Immobilization through Engineering Protein Surface with Histidine Clusters.
ACS Appl Mater Interfaces. 2024 Jan 10;16(1):833-846. doi: 10.1021/acsami.3c15993. Epub 2023 Dec 22.
5
From nature to industry: Harnessing enzymes for biocatalysis.
Science. 2023 Nov 24;382(6673):eadh8615. doi: 10.1126/science.adh8615.
6
Catcher/Tag Toolbox: Biomolecular Click-Reactions For Protein Engineering Beyond Genetics.
Chembiochem. 2024 Jan 2;25(1):e202300600. doi: 10.1002/cbic.202300600. Epub 2023 Nov 15.
7
Biocatalytic Foams from Microdroplet-Formulated Self-Assembling Enzymes.
Adv Mater. 2023 Sep;35(39):e2303952. doi: 10.1002/adma.202303952. Epub 2023 Jul 28.
8
Non-covalent binding tags for batch and flow biocatalysis.
Enzyme Microb Technol. 2023 Sep;169:110268. doi: 10.1016/j.enzmictec.2023.110268. Epub 2023 Jun 3.
9
(Magnetic) Cross-Linked Enzyme Aggregates of Cellulase from : A Stable and Efficient Biocatalyst.
Molecules. 2023 Jan 30;28(3):1305. doi: 10.3390/molecules28031305.
10
Crosslinked Aggregates of Fusion Enzymes in Microaqueous Organic Media.
Chembiochem. 2023 Apr 17;24(8):e202200794. doi: 10.1002/cbic.202200794. Epub 2023 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验