Suppr超能文献

稻瘟病菌酰基辅酶A结合蛋白对膜流动性的控制设定了寄主水稻细胞定殖的温度范围。

Membrane fluidity control by the Magnaporthe oryzae acyl-CoA binding protein sets the thermal range for host rice cell colonization.

作者信息

Richter Michael, Segal Lauren M, Rocha Raquel O, Rokaya Nisha, de Queiroz Aline R, Riekhof Wayne R, Roston Rebecca L, Wilson Richard A

机构信息

Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America.

Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America.

出版信息

PLoS Pathog. 2024 Nov 25;20(11):e1012738. doi: 10.1371/journal.ppat.1012738. eCollection 2024 Nov.

Abstract

Following leaf cuticle penetration by specialized appressorial cells, the devastating blast fungus Magnaporthe oryzae grows as invasive hyphae (IH) in living rice cells. IH are separated from host cytoplasm by plant-derived membranes forming an apoplastic compartment and a punctate biotrophic interfacial complex (BIC) that mediate the molecular host-pathogen interaction. What molecular and cellular processes determine the temperature range for this biotrophic growth stage is an unanswered question pertinent to a broader understanding of how phytopathogens may cope with environmental stresses arising under climate change. Here, we shed light on thermal adaptation in M. oryzae by disrupting the ACB1 gene encoding the single acyl-CoA-binding protein, an intracellular transporter of long-chain acyl-CoA esters. Loss of ACB1 affected fatty acid desaturation levels and abolished pathogenicity at optimal (26°C) and low (22°C) but not elevated (29°C) infection temperatures (the latter following post-penetration shifts from 26°C). Relative to wild type, the Δacb1 mutant strain exhibited poor vegetative growth and impaired membrane trafficking at 22°C and 26°C, but not at 29°C. In planta, Δacb1 biotrophic growth was inhibited at 26°C-which was accompanied by a multi-BIC phenotype-but not at 29°C, where BIC formation was normal. Underpinning the Δacb1 phenotype was impaired membrane fluidity at 22°C and 26°C but not at elevated temperatures, indicating Acb1 suppresses membrane rigidity at optimal- and suboptimal- but not supraoptimal temperatures. Deducing a temperature-dependent role for Acb1 in maintaining membrane fluidity homeostasis reveals how the thermal range for rice blast disease is both mechanistically determined and wider than hitherto appreciated.

摘要

在专门的附着胞细胞穿透叶片角质层后,具有毁灭性的稻瘟病菌会在活的水稻细胞中以侵染菌丝(IH)的形式生长。侵染菌丝通过植物来源的膜与宿主细胞质分隔开,形成一个质外体区室和一个点状活体营养界面复合体(BIC),该复合体介导分子层面的宿主 - 病原体相互作用。何种分子和细胞过程决定了这个活体营养生长阶段的温度范围,这是一个尚未得到解答的问题,对于更广泛地理解植物病原体如何应对气候变化下出现的环境压力具有重要意义。在这里,我们通过破坏编码单酰基辅酶A结合蛋白(一种长链酰基辅酶A酯的细胞内转运蛋白)的ACB1基因,来揭示稻瘟病菌的热适应性。ACB1的缺失影响了脂肪酸去饱和水平,并在最佳(26°C)和低温(22°C)而非高温(29°C)感染温度下消除了致病性(后者是在穿透后从26°C转变而来)。相对于野生型,Δacb1突变菌株在22°C和26°C时营养生长较差且膜运输受损,但在29°C时没有。在植物体内,Δacb1的活体营养生长在26°C时受到抑制,这伴随着多BIC表型,但在29°C时不受抑制,此时BIC形成正常。Δacb1表型的基础是在22°C和26°C时膜流动性受损,但在高温下没有,这表明Acb1在最佳和次最佳温度而非超最佳温度下抑制膜刚性。推断出Acb1在维持膜流动性稳态中具有温度依赖性作用,揭示了稻瘟病的温度范围是如何在机制上被确定的,并且比迄今所认识的更广泛。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b9/11627410/83bfd4447e93/ppat.1012738.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验