Ríos Francisco, Tapia-Navarro Cristina, Martínez-Gallegos Juan F, Lechuga Manuela, Fernández-Serrano Mercedes
Department of Chemical Engineering, Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n., 18071 Granada, Spain.
Department of Chemical Engineering, Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n., 18071 Granada, Spain.
J Hazard Mater. 2025 Jan 15;482:136619. doi: 10.1016/j.jhazmat.2024.136619. Epub 2024 Nov 22.
Microfibers (MFs) represent one of the most prominent sources of microplastics in aquatic environments, primarily released during textile washing alongside surfactants found in laundry detergents. This study aimed to investigate the biodegradability of natural (cotton) and synthetic (polyester) MFs individually and in combination with two surfactants: sodium lauryl sulfate (SLS, anionic) and polyoxyethylene glycerol ester (PGE-OE6, nonionic). Using the OECD 301 F test, the research assessed biodegradation patterns and environmental interactions. Biodegradation profiles have been fitted to a pseudo first-order kinetic model and to a logistic kinetic model. Results showed that cotton MFs were partially biodegradable, achieving a 74.9 % mineralization, while polyester MFs exhibited no biodegradability. Importantly, when combined with surfactants, the biodegradation of SLS was inhibited by polyester MFs, but cotton MFs enhanced SLS mineralization. Conversely, the combination of cotton MFs with PGE-OE slowed the biodegradation of both the surfactant and the MFs, delaying the onset of cotton degradation. However, polyester MFs' biodegradability remained unaffected by either surfactant. These findings emphasize the need for more comprehensive assessments of how MFs and surfactants interact in real-world environmental matrices, as these interactions can influence their persistence and ecological impact. The study highlights the scientific importance of understanding pollutant interactions to develop more effective environmental monitoring and mitigation strategies.
微纤维(MFs)是水生环境中微塑料的最主要来源之一,主要在纺织品洗涤过程中与洗衣粉中的表面活性剂一起释放出来。本研究旨在分别研究天然(棉)和合成(聚酯)微纤维以及它们与两种表面活性剂组合后的生物降解性:十二烷基硫酸钠(SLS,阴离子型)和聚氧乙烯甘油酯(PGE-OE6,非离子型)。利用经合组织301 F试验,该研究评估了生物降解模式和环境相互作用。生物降解曲线已拟合到伪一级动力学模型和逻辑动力学模型。结果表明,棉微纤维具有部分生物降解性,矿化率达到74.9%,而聚酯微纤维则没有生物降解性。重要的是,当与表面活性剂结合时,聚酯微纤维会抑制SLS的生物降解,但棉微纤维会提高SLS的矿化率。相反,棉微纤维与PGE-OE的组合减缓了表面活性剂和微纤维的生物降解,延迟了棉纤维降解的开始。然而,聚酯微纤维的生物降解性不受任何一种表面活性剂的影响。这些发现强调了需要对微纤维和表面活性剂在实际环境基质中的相互作用进行更全面的评估,因为这些相互作用会影响它们的持久性和生态影响。该研究突出了理解污染物相互作用对于制定更有效的环境监测和缓解策略的科学重要性。