Suppr超能文献

酵母细胞如何同步其糖酵解振荡:一种微扰分析处理方法。

How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment.

作者信息

Bier M, Bakker B M, Westerhoff H V

机构信息

Section of Plastic and Reconstructive Surgery, Dept. of Surgery MC 6035, University of Chicago, Chicago, Illinois 60637, USA.

出版信息

Biophys J. 2000 Mar;78(3):1087-93. doi: 10.1016/S0006-3495(00)76667-7.

Abstract

Of all the lifeforms that obtain their energy from glycolysis, yeast cells are among the most basic. Under certain conditions the concentrations of the glycolytic intermediates in yeast cells can oscillate. Individual yeast cells in a suspension can synchronize their oscillations to get in phase with each other. Although the glycolytic oscillations originate in the upper part of the glycolytic chain, the signaling agent in this synchronization appears to be acetaldehyde, a membrane-permeating metabolite at the bottom of the anaerobic part of the glycolytic chain. Here we address the issue of how a metabolite remote from the pacemaking origin of the oscillation may nevertheless control the synchronization. We present a quantitative model for glycolytic oscillations and their synchronization in terms of chemical kinetics. We show that, in essence, the common acetaldehyde concentration can be modeled as a small perturbation on the "pacemaker" whose effect on the period of the oscillations of cells in the same suspension is indeed such that a synchronization develops.

摘要

在所有通过糖酵解获取能量的生命形式中,酵母细胞是最为基础的一类。在特定条件下,酵母细胞中糖酵解中间产物的浓度会发生振荡。悬浮液中的单个酵母细胞能够使它们的振荡同步,从而相互同相。尽管糖酵解振荡起源于糖酵解链的上部,但这种同步过程中的信号传导物质似乎是乙醛,它是糖酵解厌氧部分底部的一种可透过细胞膜的代谢产物。在此,我们探讨一个问题:一种远离振荡起搏起源的代谢产物如何能够控制同步过程。我们基于化学动力学提出了一个关于糖酵解振荡及其同步的定量模型。我们表明,本质上,共同的乙醛浓度可以被建模为对“起搏器”的一个小扰动,其对同一悬浮液中细胞振荡周期的影响确实使得同步得以发展。

相似文献

8
Sustained glycolytic oscillations--no need for cyanide.持续的糖酵解振荡——无需氰化物。
FEMS Microbiol Lett. 2004 Jul 15;236(2):261-6. doi: 10.1016/j.femsle.2004.05.044.
9
Sustained oscillations in living cells.活细胞中的持续振荡。
Nature. 1999 Nov 18;402(6759):320-2. doi: 10.1038/46329.

引用本文的文献

3
From biological data to oscillator models using SINDy.从生物数据到使用稀疏识别非线性动力学(SINDy)的振荡器模型
iScience. 2024 Feb 23;27(4):109316. doi: 10.1016/j.isci.2024.109316. eCollection 2024 Apr 19.
4
Glycolytic oscillations under periodic drivings.周期性驱动下的糖酵解振荡。
J R Soc Interface. 2024 Feb;21(211):20230588. doi: 10.1098/rsif.2023.0588. Epub 2024 Feb 14.
7
Principles, mechanisms and functions of entrainment in biological oscillators.生物振荡器中同步的原理、机制和功能。
Interface Focus. 2022 Apr 15;12(3):20210088. doi: 10.1098/rsfs.2021.0088. eCollection 2022 Jun 6.
8
Synchronisation of glycolytic activity in yeast cells.酵母细胞糖酵解活性的同步化。
Curr Genet. 2022 Feb;68(1):69-81. doi: 10.1007/s00294-021-01214-y. Epub 2021 Oct 11.

本文引用的文献

5
Control analysis of glycolytic oscillations.糖酵解振荡的控制分析
Biophys Chem. 1996 Nov 29;62(1-3):15-24. doi: 10.1016/s0301-4622(96)02195-3.
6
Sustained oscillations in free-energy state and hexose phosphates in yeast.酵母中自由能状态和己糖磷酸的持续振荡
Yeast. 1996 Jun 30;12(8):731-40. doi: 10.1002/(SICI)1097-0061(19960630)12:8%3C731::AID-YEA961%3E3.0.CO;2-Z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验