Suppr超能文献

基于响应面法和人工神经网络的出芽短梗霉普鲁兰多糖生产培养基优化

Response surface methodology and artificial neural network based media optimization for pullulan production in Aureobasidium pullulans.

作者信息

Sahu Nageswar, Mahanty Biswanath, Haldar Dibyajyoti

机构信息

Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.

出版信息

Int J Biol Macromol. 2025 Jan;284(Pt 1):138045. doi: 10.1016/j.ijbiomac.2024.138045. Epub 2024 Nov 23.

Abstract

The selection and optimization of carbon and nitrogen sources are essential for enhancing pullulan production in Aureobasidium pullulans. In this study, combinations of carbon (sucrose, fructose, glucose) and nitrogen sources ((NH)SO, urea, NaNO) were screened, where sucrose and NaNO offered the highest pullulan yield (9.33 g L). Plackett-Burman design of experiment identified KHPO, NaCl, and sucrose as significant factors, which were further optimized using a central composite design. A hyperparameter-optimized artificial neural network (ANN) model with a 3-6-2-1 architecture demonstrated superior predictive accuracy (R: 0.96) and generalizability (R: 0.74) over a reduced quadratic model (R: 0.82). The predicted pullulan yield (31.9 g L) under ANN model optimized conditions (sucrose: 79.9 g L, KHPO: 0.25 g L, NaCl: 4.3 g L) closely matched with the observed yield (30.17 g L), while quadratic model showed a significant deviation (39.7 g L vs. 21.0 g L), highlighting the reliability of the ANN model.

摘要

碳源和氮源的选择与优化对于提高出芽短梗霉中普鲁兰多糖的产量至关重要。在本研究中,对碳源(蔗糖、果糖、葡萄糖)和氮源(硫酸铵、尿素、硝酸钠)的组合进行了筛选,其中蔗糖和硝酸钠的普鲁兰多糖产量最高(9.33 g/L)。实验的Plackett-Burman设计确定磷酸二氢钾、氯化钠和蔗糖为显著因素,使用中心复合设计对其进行了进一步优化。具有3-6-2-1架构的超参数优化人工神经网络(ANN)模型在预测准确性(R:0.96)和泛化能力(R:0.74)方面优于简化二次模型(R:0.82)。在人工神经网络模型优化条件下(蔗糖:79.9 g/L,磷酸二氢钾:0.25 g/L,氯化钠:4.3 g/L)预测的普鲁兰多糖产量(31.9 g/L)与观察到的产量(30.17 g/L)非常匹配,而二次模型则显示出显著偏差(39.7 g/L对21.0 g/L),突出了人工神经网络模型的可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验