Wang Guoqiao, Hassenstab Jason, Li Yan, Aschenbrenner Andrew J, McDade Eric M, Llibre-Guerra Jorge, Bateman Randall J, Xiong Chengjie
Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA.
Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA.
Stat Med. 2024 Dec 30;43(30):5898-5910. doi: 10.1002/sim.10292. Epub 2024 Nov 25.
Measurement burst designs typically administer brief cognitive tests four times per day for 1 week, resulting in a maximum of 28 data points per week per test for every 6 months. In Alzheimer's disease clinical trials, utilizing measurement burst designs holds great promise for boosting statistical power by collecting huge amount of data. However, appropriate methods for analyzing these complex datasets are not well investigated. Furthermore, the large amount of burst design data also poses tremendous challenges for traditional computational procedures such as SAS mixed or Nlmixed. We propose to analyze burst design data using novel hierarchical linear mixed effects models or hierarchical mixed models for repeated measures. Through simulations and real-world data applications using the novel SAS procedure Hpmixed, we demonstrate these hierarchical models' efficiency over traditional models. Our sample simulation and analysis code can serve as a catalyst to facilitate the methodology development for burst design data.
测量突发设计通常每天进行四次简短的认知测试,持续1周,每6个月每项测试每周最多可产生28个数据点。在阿尔茨海默病临床试验中,采用测量突发设计有望通过收集大量数据来提高统计效力。然而,分析这些复杂数据集的适当方法尚未得到充分研究。此外,大量的突发设计数据也给传统的计算程序(如SAS混合程序或Nlmixed)带来了巨大挑战。我们建议使用新颖的分层线性混合效应模型或重复测量的分层混合模型来分析突发设计数据。通过使用新颖的SAS程序Hpmixed进行模拟和实际数据应用,我们证明了这些分层模型相对于传统模型的效率。我们的样本模拟和分析代码可以促进突发设计数据方法学的发展。