Department of Psychiatry, University of Minnesota, USA; Department of Neurosurgery, University of Minnesota, USA.
Department of Neurosurgery, Mayo Clinic, USA.
Neuroimage. 2024 Apr 15;290:120557. doi: 10.1016/j.neuroimage.2024.120557. Epub 2024 Feb 27.
Time series analysis is critical for understanding brain signals and their relationship to behavior and cognition. Cluster-based permutation tests (CBPT) are commonly used to analyze a variety of electrophysiological signals including EEG, MEG, ECoG, and sEEG data without a priori assumptions about specific temporal effects. However, two major limitations of CBPT include the inability to directly analyze experiments with multiple fixed effects and the inability to account for random effects (e.g. variability across subjects). Here, we propose a flexible multi-step hypothesis testing strategy using CBPT with Linear Mixed Effects Models (LMEs) and Generalized Linear Mixed Effects Models (GLMEs) that can be applied to a wide range of experimental designs and data types.
We first evaluate the statistical robustness of LMEs and GLMEs using simulated data distributions. Second, we apply a multi-step hypothesis testing strategy to analyze ERPs and broadband power signals extracted from human ECoG recordings collected during a simple image viewing experiment with image category and novelty as fixed effects. Third, we assess the statistical power differences between analyzing signals with CBPT using LMEs compared to CBPT using separate t-tests run on each fixed effect through simulations that emulate broadband power signals. Finally, we apply CBPT using GLMEs to high-gamma burst data to demonstrate the extension of the proposed method to the analysis of nonlinear data.
First, we found that LMEs and GLMEs are robust statistical models. In simple simulations LMEs produced highly congruent results with other appropriately applied linear statistical models, but LMEs outperformed many linear statistical models in the analysis of "suboptimal" data and maintained power better than analyzing individual fixed effects with separate t-tests. GLMEs also performed similarly to other nonlinear statistical models. Second, in real world human ECoG data, LMEs performed at least as well as separate t-tests when applied to predefined time windows or when used in conjunction with CBPT. Additionally, fixed effects time courses extracted with CBPT using LMEs from group-level models of pseudo-populations replicated latency effects found in individual category-selective channels. Third, analysis of simulated broadband power signals demonstrated that CBPT using LMEs was superior to CBPT using separate t-tests in identifying time windows with significant fixed effects especially for small effect sizes. Lastly, the analysis of high-gamma burst data using CBPT with GLMEs produced results consistent with CBPT using LMEs applied to broadband power data.
We propose a general approach for statistical analysis of electrophysiological data using CBPT in conjunction with LMEs and GLMEs. We demonstrate that this method is robust for experiments with multiple fixed effects and applicable to the analysis of linear and nonlinear data. Our methodology maximizes the statistical power available in a dataset across multiple experimental variables while accounting for hierarchical random effects and controlling FWER across fixed effects. This approach substantially improves power leading to better reproducibility. Additionally, CBPT using LMEs and GLMEs can be used to analyze individual channels or pseudo-population data for the comparison of functional or anatomical groups of data.
时间序列分析对于理解大脑信号及其与行为和认知的关系至关重要。基于聚类的置换检验(CBPT)常用于分析各种电生理信号,包括 EEG、MEG、ECoG 和 sEEG 数据,而无需对特定的时间效应做出先验假设。然而,CBPT 有两个主要局限性,包括无法直接分析具有多个固定效应的实验,以及无法解释随机效应(例如,跨受试者的变异性)。在这里,我们提出了一种使用 CBPT 与线性混合效应模型(LMEs)和广义线性混合效应模型(GLMEs)的灵活多步假设检验策略,该策略可应用于广泛的实验设计和数据类型。
我们首先使用模拟数据分布评估 LMEs 和 GLMEs 的统计稳健性。其次,我们应用多步假设检验策略来分析从人类 ECoG 记录中提取的 ERP 和宽带功率信号,这些记录是在具有图像类别和新颖性作为固定效应的简单图像查看实验中收集的。第三,我们通过模拟来评估分析使用 LMEs 的 CBPT 与分析使用单独 t 检验的 CBPT 在分析宽带功率信号时的统计功效差异,这些单独 t 检验在每个固定效应上运行。最后,我们使用 GLMEs 对高伽马爆发数据进行 CBPT,以证明所提出方法可以扩展到分析非线性数据。
首先,我们发现 LMEs 和 GLMEs 是稳健的统计模型。在简单的模拟中,LMEs 产生的结果与其他适当应用的线性统计模型高度一致,但 LMEs 在分析“次优”数据方面表现优于许多线性统计模型,并且比使用单独的 t 检验分析单个固定效应的功效更好。GLMEs 的表现也与其他非线性统计模型相似。其次,在真实的人类 ECoG 数据中,当应用于预定义的时间窗口或与 CBPT 结合使用时,LMEs 的性能至少与单独的 t 检验一样好。此外,从群组水平模型中提取的固定效应时间历程使用 LMEs 复制了在个体类别选择性通道中发现的潜伏期效应。第三,对模拟宽带功率信号的分析表明,使用 LMEs 的 CBPT 在识别具有显著固定效应的时间窗口方面优于使用单独 t 检验的 CBPT,尤其是对于小的效应大小。最后,使用 GLMEs 对高伽马爆发数据进行 CBPT 的分析结果与应用于宽带功率数据的 LMEs 一致。
我们提出了一种使用 CBPT 结合 LMEs 和 GLMEs 对电生理数据进行统计分析的一般方法。我们证明,这种方法对于具有多个固定效应的实验是稳健的,并且适用于线性和非线性数据的分析。我们的方法最大限度地提高了数据集在多个实验变量下的统计功效,同时考虑了层次随机效应,并控制了固定效应的 FWER。这种方法显著提高了功效,从而提高了可重复性。此外,使用 LMEs 和 GLMEs 的 CBPT 可用于分析个体通道或伪群体数据,以比较功能或解剖学数据组。