Suppr超能文献

Evaluation of Skin Color Supervision Genes in Chickpea Seeds by Multiomics.

作者信息

Ma Yanming, Xu Lin, Zhuang Hongmei, Abd-Eldaim Faten A, Tang Zhonghua, Dewer Youssef, Wang Hao

机构信息

Institute of Crop Germplasm Resource, Xinjiang Academy of Agricultural Sciences, Urumqi, 830000, China.

Institute of Horticulture, Xinjiang Academy of Agricultural Sciences, Urumqi, 830000, China.

出版信息

Mol Biotechnol. 2024 Nov 26. doi: 10.1007/s12033-024-01304-5.

Abstract

Seed samples of two types of chickpea (Cicer arietinum Linn.), including variety A (NRCGR-4452) and variety B (local varieties), with different seed colors, were collected every five days for a total of four times during the seed development period. Non-targeted metabolome and transcriptome sequencing were conducted to identify differentially expressed genes and metabolites associated with chickpea seed coat color. The results indicated that the relative quercetin, pelargonidin, luteolin, rutin, myricetin, kaempferol, glycitin, and naringin contents were higher in variety A than in variety B, and that carbohydrate and amino acid metabolites had a greater impact on flavonoid metabolites. Quercetin, luteolin, and kaempferol were most significantly associated with seed color differences, the associated enzyme genes were LOC101491583 (callose synthase 5-like), LOC101503703 (flavonoid 3',5'-hydroxylase), LOC101514158 (callose synthase 5), LOC101497872 (UDP-glycosyltransferase 74F1-like), LOC101500232 (callose synthase 7 isoform X1), LOC101511206 (UDP-glycosyltransferase 73C3-like), LOC101502065 (galactoside 2-alpha-L-fucosyltransferase), LOC101492791 (sulfoquinovosyl transferase SQD2), and LOC101509377 (flavonol synthase). Additionally, the gene transcription factor MYB44 may regulate UDP-glycosyltransferase 73C3 to affect seed color differences.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验