Xiao Wen, Yang Zhan, Hu Shilin, He Yuzhou, Gao Xiaofei, Liu Junhua, Deng Zhixiong, Hong Yuhao, Wei Long, Wang Lei, Shen Ziyue, Wang Tianyang, Li Lin, Gan Yulin, Chen Kai, Zhang Qinghua, Liao Zhaoliang
National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China.
School of Physics, Zhengzhou University, Zhengzhou, China.
Nat Commun. 2024 Nov 25;15(1):10215. doi: 10.1038/s41467-024-54660-w.
Recent observations of superconductivity in infinite-layer nickelates offer insights into high-temperature superconductivity mechanisms. However, defects and dislocations in doped films complicate the realization of superconductivity, limiting current research to superconducting nickelate heterostructures. The lack of research on superconductivity in superlattices composed of ultrathin nickelates severely impedes not only the exploration of the interface effect on superconductivity, but also the utilization of heterostructure engineering for exploring higher superconducting temperature T. Here, we demonstrated superconducting infinite-layer nickelate superlattices [(NdSrNiO)/(SrTiO)] via topotactic reduction. Our study uncovered that only above a critical thickness can high-quality superlattices be achieved, with structural formation dependent on nickelate layer thickness. The superconducting superlattice showed a T of 12.5 K and a 2D superconducting feature, indirectly indicate the intrinsic superconductivity of infinite-layer nickelates. Our study offers promising avenues for delving into the superconducting mechanism and for exploring multilevel interface engineering of infinite-layer nickelates, thus opening new horizons for the study of infinite-layer nickelates.
最近在无限层镍酸盐中观察到的超导现象为高温超导机制提供了见解。然而,掺杂薄膜中的缺陷和位错使超导的实现变得复杂,将当前的研究限制在超导镍酸盐异质结构上。对由超薄镍酸盐组成的超晶格中的超导性缺乏研究,不仅严重阻碍了对超导性界面效应的探索,也阻碍了利用异质结构工程探索更高超导温度 $T_c$。在此,我们通过拓扑还原展示了超导无限层镍酸盐超晶格[(NdSrNiO)/(SrTiO)]。我们的研究发现,只有超过临界厚度才能获得高质量的超晶格,其结构形成取决于镍酸盐层的厚度。超导超晶格的 $T_c$ 为12.5 K,并具有二维超导特性,间接表明了无限层镍酸盐的本征超导性。我们的研究为深入探究超导机制以及探索无限层镍酸盐的多级界面工程提供了有前景的途径,从而为无限层镍酸盐的研究开辟了新视野。