Hausoel Andreas, Di Cataldo Simone, Kitatani Motoharu, Janson Oleg, Held Karsten
Institute for Theoretical Solid State Physics, Leibniz Institute for Solid State and Materials Research Dresden, Dresden, Germany.
Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy.
NPJ Quantum Mater. 2025;10(1):69. doi: 10.1038/s41535-025-00786-z. Epub 2025 Jul 1.
Following the successful prediction of the superconducting phase diagram for infinite-layer nickelates, here we calculate the superconducting vs. the number of layers for finite-layer nickelates using the dynamical vertex approximation. To this end, we start with density functional theory, and include local correlations non-perturbatively by dynamical mean-field theory for = 2-7. For all , the Ni orbital crosses the Fermi level, but for > 4 there are additional (, ) pockets or tubes that slightly enhance the layer-averaged hole doping of the orbitals beyond the leading 1/ contribution stemming from the valence electron count. We finally calculate for the single-orbital Hubbard model by dynamical vertex approximation.
在成功预测无限层镍酸盐的超导相图之后,在此我们使用动态顶点近似计算有限层镍酸盐的超导性与层数的关系。为此,我们从密度泛函理论出发,并通过动态平均场理论对(n = 2 - 7)非微扰地纳入局域关联。对于所有(n),Ni (3d)轨道穿过费米能级,但对于(n > 4),存在额外的((\pi, \pi))口袋或管,这略微增强了(3d)轨道的层平均空穴掺杂,超出了由价电子数主导的(1 / n)贡献。我们最终通过动态顶点近似计算单轨道哈伯德模型的超导转变温度。