Li Shang, Feng Li, Wang Hengwei, Lin Yue, Sun Zhihu, Xu Lulu, Xu Yuxing, Liu Xinyu, Li Wei-Xue, Wei Shiqiang, Liu Jin-Xun, Lu Junling
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China.
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
Nat Nanotechnol. 2025 Feb;20(2):255-264. doi: 10.1038/s41565-024-01824-w. Epub 2024 Nov 25.
Selective conversion of syngas to value-added higher alcohols (containing two or more carbon atoms), particularly to a specific alcohol, is of great interest but remains challenging. Here we show that atomically intimate assembly of FeO-Rh-ZrO dual interfaces by selectively architecting highly dispersed FeO on ultrafine raft-like Rh clusters supported on tetragonal zirconia enables highly efficient tandem conversion of syngas to ethanol. The ethanol selectivity in oxygenates reached ~90% at CO conversion up to 51%, along with a markedly high space-time yield of ethanol of 668.2 mg g h. In situ spectroscopic characterization and theoretical calculations reveal that Rh-ZrO interface promotes dissociative CO activation into CH through a formate pathway, while the adjacent Rh-FeO interface accelerates subsequent C-C coupling via nondissociative CO insertion. Consequently, these dual interfaces in atomic-scale proximity with complementary functionalities synergistically boost the exclusive formation of ethanol with exceptional productivity in a tandem manner.
将合成气选择性转化为增值高级醇(含有两个或更多碳原子),特别是转化为特定的醇,备受关注但仍具有挑战性。在此我们表明,通过在四方氧化锆负载的超细筏状铑簇上选择性构建高度分散的氧化亚铁,实现氧化亚铁-铑-氧化锆双界面的原子级紧密组装,能够实现合成气高效串联转化为乙醇。在一氧化碳转化率高达51%时,含氧化合物中的乙醇选择性达到约90%,同时乙醇的时空产率显著高达668.2 mg g⁻¹ h⁻¹。原位光谱表征和理论计算表明,铑-氧化锆界面通过甲酸途径促进一氧化碳解离活化生成碳氢,而相邻的铑-氧化亚铁界面通过非解离一氧化碳插入加速随后的碳-碳偶联。因此,这些具有互补功能的原子尺度相邻双界面以串联方式协同促进乙醇的独家形成,并具有卓越的生产率。