Suppr超能文献

负载于铂上的原子级分散氢氧化铁用于氢气中一氧化碳的优先氧化

Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H.

作者信息

Cao Lina, Liu Wei, Luo Qiquan, Yin Ruoting, Wang Bing, Weissenrieder Jonas, Soldemo Markus, Yan Huan, Lin Yue, Sun Zhihu, Ma Chao, Zhang Wenhua, Chen Si, Wang Hengwei, Guan Qiaoqiao, Yao Tao, Wei Shiqiang, Yang Jinlong, Lu Junling

机构信息

Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.

Department of Chemical Physics, University of Science and Technology of China, Hefei, China.

出版信息

Nature. 2019 Jan;565(7741):631-635. doi: 10.1038/s41586-018-0869-5. Epub 2019 Jan 30.

Abstract

Proton-exchange-membrane fuel cells (PEMFCs) are attractive next-generation power sources for use in vehicles and other applications, with development efforts focusing on improving the catalyst system of the fuel cell. One problem is catalyst poisoning by impurity gases such as carbon monoxide (CO), which typically comprises about one per cent of hydrogen fuel. A possible solution is on-board hydrogen purification, which involves preferential oxidation of CO in hydrogen (PROX). However, this approach is challenging because the catalyst needs to be active and selective towards CO oxidation over a broad range of low temperatures so that CO is efficiently removed (to below 50 parts per million) during continuous PEMFC operation (at about 353 kelvin) and, in the case of automotive fuel cells, during frequent cold-start periods. Here we show that atomically dispersed iron hydroxide, selectively deposited on silica-supported platinum (Pt) nanoparticles, enables complete and 100 per cent selective CO removal through the PROX reaction over the broad temperature range of 198 to 380 kelvin. We find that the mass-specific activity of this system is about 30 times higher than that of more conventional catalysts consisting of Pt on iron oxide supports. In situ X-ray absorption fine-structure measurements reveal that most of the iron hydroxide exists as Fe(OH) clusters anchored on the Pt nanoparticles, with density functional theory calculations indicating that Fe(OH)-Pt single interfacial sites can readily react with CO and facilitate oxygen activation. These findings suggest that in addition to strategies that target oxide-supported precious-metal nanoparticles or isolated metal atoms, the deposition of isolated transition-metal complexes offers new ways of designing highly active metal catalysts.

摘要

质子交换膜燃料电池(PEMFC)是用于车辆和其他应用的极具吸引力的下一代电源,研发工作主要集中在改进燃料电池的催化剂体系。一个问题是杂质气体如一氧化碳(CO)会导致催化剂中毒,一氧化碳在氢气燃料中通常约占1%。一种可能的解决方案是车载氢气净化,其中涉及氢气中CO的优先氧化(PROX)。然而,这种方法具有挑战性,因为催化剂需要在很宽的低温范围内对CO氧化具有活性和选择性,以便在PEMFC连续运行期间(约353开尔文)以及对于汽车燃料电池而言在频繁的冷启动期间有效地去除CO(至百万分之50以下)。在此,我们表明,选择性沉积在二氧化硅负载的铂(Pt)纳米颗粒上的原子分散氢氧化铁,能够在198至380开尔文的宽温度范围内通过PROX反应实现CO的完全且100%选择性去除。我们发现该体系的质量比活性比由负载在氧化铁载体上的Pt组成的更传统催化剂高约30倍。原位X射线吸收精细结构测量表明,大部分氢氧化铁以锚定在Pt纳米颗粒上的Fe(OH)簇形式存在,密度泛函理论计算表明Fe(OH)-Pt单界面位点能够很容易地与CO反应并促进氧活化。这些发现表明,除了针对负载氧化物的贵金属纳米颗粒或孤立金属原子的策略外,孤立过渡金属配合物的沉积为设计高活性金属催化剂提供了新方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验