Suppr超能文献

单细胞测序与药物敏感性分析的整合揭示了一种用于肝癌的 11 基因预后模型。

Integration of single-cell sequencing and drug sensitivity profiling reveals an 11-gene prognostic model for liver cancer.

机构信息

Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, China.

Department of Radiology, Guangzhou Chest Hospital, Guangzhou, 510095, Guangdong Province, China.

出版信息

Hum Genomics. 2024 Nov 25;18(1):132. doi: 10.1186/s40246-024-00698-2.

Abstract

BACKGROUND

Liver cancer has a high global incidence, particularly in East Asia. Early detection difficulties lead to poor prognosis. Single-cell sequencing precisely identifies gene expression differences in specific cell types, making it valuable in tumor microenvironment research and immune drug development. However, the characteristics of tumor cells themselves are equally important for patient prognosis and treatment.

METHODS

We downloaded single-cell sequencing data from GSE189903, grouped cells by cluster markers, and classified epithelial cells into adjacent non-tumor, normal, and tumor cells. Differential gene and survival analyses identified significant differential genes. Using TCGA-LIHC data, we divided 370 patients into test and training sets. We constructed and validated a LASSO model based on these genes in both sets and two external datasets. Functional, immune infiltration, and mutation analyses were performed on high and low-risk groups. We also used RNA-seq and IC50 data of 15 liver cancer cell lines from GDSC, scoring them with our prognostic model to identify potential drugs for high-risk patients.

RESULTS

Dimensionality reduction and clustering of 34 single-cell samples identified five subgroups, with epithelial cells further classified. Differential gene analysis identified 124 significant genes. An 11-gene prognostic model was constructed, effectively stratifying patient prognosis (p < 0.05) and achieving an AUC above 0.6 for 5 year survival prediction in multiple cohorts. Functional analysis revealed that upregulated genes in high-risk groups were enriched in cell adhesion pathways, while downregulated genes were enriched in metabolic pathways. Mutation analysis showed more TP53 mutations in the high-risk group and more CTNNB1 mutations in the low-risk group. Immune infiltration analysis indicated higher immune scores and less CD8 + naive T cell infiltration in the high-risk group. Drug sensitivity analysis identified 14 drugs with lower IC50 in the high-risk group, including clinically approved Sorafenib and Axitinib for treating unresectable HCC.

CONCLUSION

We established an 11-gene prognostic model that effectively stratifies liver cancer patients based on differentially expressed genes between tumor and adjacent non-tumor cells clustered by scRNA-seq data. The two risk groups had significantly different molecular characteristics. We identified 14 drugs that might be effective for high-risk HCC patients. Our study provides novel insights into tumor cell characteristics, aiding in research on tumor development and treatment.

摘要

背景

肝癌在全球发病率较高,尤其在东亚地区。早期检测困难导致预后不良。单细胞测序精确识别特定细胞类型的基因表达差异,在肿瘤微环境研究和免疫药物开发中具有重要价值。然而,肿瘤细胞本身的特征对于患者的预后和治疗同样重要。

方法

我们从 GSE189903 下载了单细胞测序数据,根据聚类标记对细胞进行分组,并将上皮细胞分为相邻非肿瘤、正常和肿瘤细胞。差异基因和生存分析确定了显著差异的基因。使用 TCGA-LIHC 数据,我们将 370 名患者分为测试集和训练集。我们基于这些基因在两组和两个外部数据集中构建和验证了 LASSO 模型。对高风险和低风险组进行功能、免疫浸润和突变分析。我们还使用了 GDSC 中来自 15 种肝癌细胞系的 RNA-seq 和 IC50 数据,并用我们的预后模型对其进行评分,以确定高风险患者的潜在药物。

结果

对 34 个单细胞样本的降维和聚类分析确定了五个亚群,进一步将上皮细胞分类。差异基因分析确定了 124 个显著基因。构建了一个 11 基因预后模型,有效地对患者的预后进行分层(p<0.05),并在多个队列中实现了 5 年生存率预测的 AUC 值超过 0.6。功能分析表明,高风险组中上调的基因富集在细胞黏附途径中,而下调的基因富集在代谢途径中。突变分析表明,高风险组中 TP53 突变较多,低风险组中 CTNNB1 突变较多。免疫浸润分析表明,高风险组的免疫评分较高,CD8+幼稚 T 细胞浸润较少。药物敏感性分析发现高风险组中有 14 种药物的 IC50 较低,包括临床批准的用于治疗不可切除 HCC 的索拉非尼和阿昔替尼。

结论

我们基于 scRNA-seq 数据聚类的肿瘤和相邻非肿瘤细胞之间差异表达基因建立了一个有效的 11 基因预后模型,对肝癌患者进行分层。两个风险组具有显著不同的分子特征。我们发现了 14 种可能对高危 HCC 患者有效的药物。我们的研究为肿瘤细胞特征提供了新的见解,有助于肿瘤发生和治疗的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f07a/11590408/e25fa6454d0f/40246_2024_698_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验