Suppr超能文献

基于临床参数和免疫组化标志物预测早发性子宫内膜癌切除术后复发的列线图模型:一项多机构研究

A nomogram model to predict recurrence of early-onset endometrial cancer after resection based on clinical parameters and immunohistochemical markers: a multi-institutional study.

作者信息

Zheng Yunfeng, Shen Qingyu, Yang Fan, Wang Jinyu, Zhou Qian, Hu Ran, Jiang Peng, Yuan Rui

机构信息

Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Department of Gynecology, Chongqing Yubei Maternity & Child Healthcare Hospital, Chongqing, China.

出版信息

Front Oncol. 2024 Nov 11;14:1442489. doi: 10.3389/fonc.2024.1442489. eCollection 2024.

Abstract

OBJECTIVE

This study aimed to investigate the prognosis value of the clinical parameters and immunohistochemical markers of patients with early-onset endometrial cancer (EC) and establish a nomogram to accurately predict recurrence-free survival (RFS) of early-onset EC after resection.

METHODS

A training dataset containing 458 patients and an independent testing dataset consisting of 170 patients were employed in this retrospective study. The independent risk factors related to RFS were confirmed using Cox regression models. A nomogram model was established to predict RFS at 3 and 5 years post-hysterectomy. The C-index, area under the curve (AUC) of the receiver operating characteristic (ROC) curve, and calibration curve were calculated to assess the predictive accuracy of the nomogram.

RESULTS

In all early-onset EC patients, more than half (368/628, 58.6%) were diagnosed in the age range of 45-49 years. Meanwhile, the recurrence rate of early-onset EC is approximately 10.8%. Multivariate Cox regression analyses showed that histological subtype, FIGO stage, myometrial invasion, lymphovascular space invasion (LVSI), P53 expression, and MMR status were independent prognostic factors related to RFS (all < 0.05) and established the nomogram predicting 3- and 5-year RFS. The C-index and calibration curves of the nomogram demonstrated a close correlation between predicted and actual RFS. Patients were divided into high- and low-risk groups according to the model of RFS.

CONCLUSIONS

Combining clinical parameters and immunohistochemical markers, we developed a robust nomogram to predict RFS after surgery for early-onset EC patients. This nomogram can predict prognosis well and guide treatment decisions.

摘要

目的

本研究旨在探讨早发性子宫内膜癌(EC)患者临床参数和免疫组化标志物的预后价值,并建立列线图以准确预测早发性EC切除术后的无复发生存期(RFS)。

方法

本回顾性研究采用了包含458例患者的训练数据集和由170例患者组成的独立测试数据集。使用Cox回归模型确定与RFS相关的独立危险因素。建立列线图模型以预测子宫切除术后3年和5年的RFS。计算C指数、受试者工作特征(ROC)曲线下面积(AUC)和校准曲线,以评估列线图的预测准确性。

结果

在所有早发性EC患者中,超过一半(368/628,58.6%)在45-49岁年龄段被诊断。同时,早发性EC的复发率约为10.8%。多因素Cox回归分析表明,组织学亚型、国际妇产科联盟(FIGO)分期、肌层浸润、淋巴管间隙浸润(LVSI)、P53表达和错配修复(MMR)状态是与RFS相关的独立预后因素(均P<0.05),并建立了预测3年和5年RFS的列线图。列线图的C指数和校准曲线显示预测的RFS与实际的RFS之间具有密切相关性。根据RFS模型将患者分为高危和低危组。

结论

结合临床参数和免疫组化标志物,我们开发了一个可靠的列线图来预测早发性EC患者术后的RFS。该列线图可以很好地预测预后并指导治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b3f/11586258/0c47dc09ec3c/fonc-14-1442489-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验