Suppr超能文献

基于边缘云协作的遗传算法-注意力机制-长短期记忆网络实现工业物联网设施的实时故障检测

Real-time fault detection for IIoT facilities using GA-Att-LSTM based on edge-cloud collaboration.

作者信息

Dong Jiuling, Li Zehui, Zheng Yuanshuo, Luo Jingtang, Zhang Min, Yang Xiaolong

机构信息

School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China.

School of Information Science and Technology, Hainan Normal University, Haikou, China.

出版信息

Front Neurorobot. 2024 Nov 11;18:1499703. doi: 10.3389/fnbot.2024.1499703. eCollection 2024.

Abstract

With the rapid development of Industrial Internet of Things (IIoT) technology, various IIoT devices are generating large amounts of industrial sensor data that are spatiotemporally correlated and heterogeneous from multi-source and multi-domain. This poses a challenge to current detection algorithms. Therefore, this paper proposes an improved long short-term memory (LSTM) neural network model based on the genetic algorithm, attention mechanism and edge-cloud collaboration (GA-Att-LSTM) framework is proposed to detect anomalies of IIoT facilities. Firstly, an edge-cloud collaboration framework is established to real-time process a large amount of sensor data at the edge node in real time, which reduces the time of uploading sensor data to the cloud platform. Secondly, to overcome the problem of insufficient attention to important features in the input sequence in traditional LSTM algorithms, we introduce an attention mechanism to adaptively adjust the weights of important features in the model. Meanwhile, a genetic algorithm optimized hyperparameters of the LSTM neural network is proposed to transform anomaly detection into a classification problem and effectively extract the correlation of time-series data, which improves the recognition rate of fault detection. Finally, the proposed method has been evaluated on a publicly available fault database. The results indicate an accuracy of 99.6%, an F1-score of 84.2%, a precision of 89.8%, and a recall of 77.6%, all of which exceed the performance of five traditional machine learning methods.

摘要

随着工业物联网(IIoT)技术的快速发展,各种IIoT设备正在生成大量的工业传感器数据,这些数据来自多源多域,具有时空相关性和异构性。这给当前的检测算法带来了挑战。因此,本文提出了一种基于遗传算法、注意力机制和边缘云协作的改进长短期记忆(LSTM)神经网络模型(GA-Att-LSTM)框架,用于检测IIoT设施的异常情况。首先,建立了一个边缘云协作框架,在边缘节点实时处理大量传感器数据,减少了将传感器数据上传到云平台的时间。其次,为了克服传统LSTM算法对输入序列中重要特征关注不足的问题,引入了注意力机制,以自适应地调整模型中重要特征的权重。同时,提出了一种遗传算法优化LSTM神经网络的超参数,将异常检测转化为分类问题,有效地提取时间序列数据的相关性,提高了故障检测识别率。最后,在所公开的故障数据库上对所提出的方法进行了评估。结果表明,准确率为99.6%,F1分数为84.2%,精确率为89.8%,召回率为77.6%,所有这些指标均超过了五种传统机器学习方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b448/11586361/a228daff7fe5/fnbot-18-1499703-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验