Suppr超能文献

具有集成传感器的光学可访问3D打印流动腔,用于监测口腔多物种生物膜生长

Optically accessible, 3D-printed flow chamber with integrated sensors for the monitoring of oral multispecies biofilm growth .

作者信息

Debener Nicolas, Heine Nils, Legutko Beate, Denkena Berend, Prasanthan Vannila, Frings Katharina, Torres-Mapa Maria Leilani, Heisterkamp Alexander, Stiesch Meike, Doll-Nikutta Katharina, Bahnemann Janina

机构信息

Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany.

Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany.

出版信息

Front Bioeng Biotechnol. 2024 Nov 11;12:1483200. doi: 10.3389/fbioe.2024.1483200. eCollection 2024.

Abstract

The formation of pathogenic multispecies biofilms in the human oral cavity can lead to implant-associated infections, which may ultimately result in implant failure. These infections are neither easily detected nor readily treated. Due to high complexity of oral biofilms, detailed mechanisms of the bacterial dysbiotic shift are not yet even fully understood. In order to study oral biofilms in more detail and develop prevention strategies to fight implant-associated infections, biofilm models are sorely needed. In this study, we adapted an biofilm flow chamber model to include miniaturized transparent 3D-printed flow chambers with integrated optical pH sensors - thereby enabling the microscopic evaluation of biofilm growth as well as the monitoring of acidification in close proximity. Two different 3D printing materials were initially characterized with respect to their biocompatibility and surface topography. The functionality of the optically accessible miniaturized flow chambers was then tested using five-species biofilms (featuring the species , , , , and ) and compared to biofilm growth on titanium specimens in the established flow chamber model. As confirmed by live/dead staining and fluorescence hybridization via confocal laser scanning microscopy, the flow chamber setup proved to be suitable for growing reproducible oral biofilms under flow conditions while continuously monitoring biofilm pH. Therefore, the system is suitable for future research use with respect to biofilm dysbiosis and also has great potential for further parallelization and adaptation to achieve higher throughput as well as include additional optical sensors or sample materials.

摘要

人类口腔中致病性多物种生物膜的形成可导致种植体相关感染,最终可能导致种植失败。这些感染既不易被检测到,也难以治疗。由于口腔生物膜的高度复杂性,细菌生态失调转变的详细机制甚至尚未完全了解。为了更详细地研究口腔生物膜并制定预防种植体相关感染的策略,迫切需要生物膜模型。在本研究中,我们对生物膜流动腔模型进行了改进,使其包括带有集成光学pH传感器的小型化透明3D打印流动腔,从而能够对生物膜生长进行微观评估以及对附近的酸化情况进行监测。最初对两种不同的3D打印材料的生物相容性和表面形貌进行了表征。然后使用五种细菌生物膜(包含 、 、 、 和 菌)测试了光学可及的小型化流动腔的功能,并与既定流动腔模型中钛样本上的生物膜生长情况进行了比较。通过共聚焦激光扫描显微镜进行的活/死染色和荧光杂交证实,该流动腔设置适合在流动条件下培养可重复的口腔生物膜,同时持续监测生物膜的pH值。因此,该系统适用于未来关于生物膜生态失调的研究,并且在进一步并行化和调整以实现更高通量以及纳入更多光学传感器或样本材料方面也具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11586212/ba3673d8b9e9/fbioe-12-1483200-g001.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验