Suppr超能文献

基于化学机械核壳模型的硅纳米颗粒的慢电压弛豫

Slow Voltage Relaxation of Silicon Nanoparticles with a Chemo-Mechanical Core-Shell Model.

作者信息

Köbbing Lukas, Kuhn Yannick, Horstmann Birger

机构信息

Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Wilhelm-Runge-Straße 10, Ulm 89081, Germany.

Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, Ulm 89081, Germany.

出版信息

ACS Appl Mater Interfaces. 2024 Dec 11;16(49):67609-67619. doi: 10.1021/acsami.4c12976. Epub 2024 Nov 26.

Abstract

Silicon presents itself as a high-capacity anode material for lithium-ion batteries with a promising future. The high ability for lithiation comes along with massive volume changes and a problematic voltage hysteresis, causing reduced efficiency, detrimental heat generation, and a complicated state-of-charge estimation. During slow cycling, amorphous silicon nanoparticles show a larger voltage hysteresis than after relaxation periods. Interestingly, the voltage relaxes for at least several days, which has not been physically explained so far. We apply a chemo-mechanical continuum model in a core-shell geometry interpreted as a silicon particle covered by the solid-electrolyte interphase to account for the hysteresis phenomena. The silicon core (de)lithiates during every cycle while the covering shell is chemically inactive. The visco-elastoplastic behavior of the shell explains the voltage hysteresis during cycling and after relaxation. We identify a logarithmic voltage relaxation, which fits with the established Garofalo law for viscosity. Our chemo-mechanical model describes the observed voltage hysteresis phenomena and outperforms the empirical Plett model. In addition to our full model, we present a reduced model to allow for easy voltage profile estimations. The presented results support the mechanical explanation of the silicon voltage hysteresis with a core-shell model and encourage further efforts into the investigation of the silicon anode mechanics.

摘要

硅作为一种用于锂离子电池的高容量负极材料,展现出了广阔的前景。其高锂化能力伴随着巨大的体积变化和有问题的电压滞后现象,导致效率降低、有害热量产生以及复杂的荷电状态估计。在慢速循环过程中,非晶硅纳米颗粒的电压滞后比弛豫期后的更大。有趣的是,电压至少会弛豫几天,到目前为止尚未得到物理解释。我们应用一个核壳几何结构的化学 - 机械连续介质模型,该模型被解释为一个被固体电解质界面覆盖的硅颗粒,以解释滞后现象。硅核在每个循环中进行(脱)锂化,而覆盖层在化学上是惰性的。覆盖层的粘弹塑性行为解释了循环期间和弛豫后的电压滞后现象。我们确定了对数电压弛豫,它符合已确立的关于粘度的加罗法洛定律。我们的化学 - 机械模型描述了观察到的电压滞后现象,并且优于经验性的普莱特模型。除了我们的完整模型,我们还提出了一个简化模型,以便于进行电压分布估计。所呈现的结果支持了用核壳模型对硅电压滞后现象进行力学解释,并鼓励进一步深入研究硅负极力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67b5/11647879/6c4664582b9e/am4c12976_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验