Suppr超能文献

表面二氧化硅厚度控制锂离子电池硅负极锂化过程中的均匀到局部转变。

Surface SiO Thickness Controls Uniform-to-Localized Transition in Lithiation of Silicon Anodes for Lithium-Ion Batteries.

作者信息

Schnabel Manuel, Harvey Steven P, Arca Elisabetta, Stetson Caleb, Teeter Glenn, Ban Chunmei, Stradins Paul

机构信息

National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States.

Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California 94720, United States.

出版信息

ACS Appl Mater Interfaces. 2020 Jun 17;12(24):27017-27028. doi: 10.1021/acsami.0c03158. Epub 2020 Jun 2.

Abstract

Silicon is a promising anode material for lithium-ion batteries because of its high capacity, but its widespread adoption has been hampered by a low cycle life arising from mechanical failure and the absence of a stable solid-electrolyte interphase (SEI). Understanding SEI formation and its impact on cycle life is made more complex by the oxidation of silicon materials in air or during synthesis, which leads to SiO coatings of varying thicknesses that form the true surface of the electrode. In this paper, the lithiation of SiO-coated Si is studied in a controlled manner using SiO coatings of different thicknesses grown on Si wafers via thermal oxidation. SiO thickness has a profound effect on lithiation: below 2 nm, SEI formation followed by uniform lithiation occurs at positive voltages versus Li/Li. Si lithiation is reversible, and SiO lithiation is largely irreversible. Above 2 nm SiO, voltammetric currents decrease exponentially with SiO thickness. For 2-3 nm SiO, SEI formation above 0.1 V is suppressed, but a hold at low or negative voltages can initiate charge transfer whereupon SEI formation and uniform lithiation occur. Cycling of Si anodes with an SiO coating thinner than 3 nm occurs at high Coulombic efficiency (CE). If an SiO coating is thicker than 3-4 nm, the behavior is totally different: lithiation at positive voltages is strongly inhibited, and lithiation occurs at poor CE and is highly localized at pinholes which grow over time. As they grow, lithiation becomes more facile and the CE increases. Pinhole growth is proposed to occur via rapid transport of Li along the SiO/Si interface radially outward from an existing pinhole, followed by the lithiation of SiO from the interface outward.

摘要

硅因其高容量而成为锂离子电池颇具前景的负极材料,但其广泛应用却因机械失效导致的低循环寿命以及缺乏稳定的固体电解质界面(SEI)而受阻。由于硅材料在空气中或合成过程中会发生氧化,这使得理解SEI的形成及其对循环寿命的影响变得更加复杂,氧化会导致形成不同厚度的SiO涂层,这些涂层构成了电极的真实表面。在本文中,通过热氧化在硅片上生长不同厚度的SiO涂层,以可控方式研究了SiO包覆的硅的锂化过程。SiO厚度对锂化有深远影响:低于2 nm时,在相对于Li/Li的正电压下会先形成SEI,然后进行均匀锂化。硅的锂化是可逆的,而SiO的锂化在很大程度上是不可逆的。SiO厚度超过2 nm时,伏安电流随SiO厚度呈指数下降。对于2 - 3 nm的SiO,0.1 V以上的SEI形成受到抑制,但在低电压或负电压下保持可引发电荷转移,随后发生SEI形成和均匀锂化。SiO涂层厚度小于3 nm的硅负极在高库仑效率(CE)下循环。如果SiO涂层厚度超过3 - 4 nm,行为则完全不同:正电压下的锂化受到强烈抑制,锂化在低CE下发生且高度局限于随时间增长的针孔处。随着针孔的生长,锂化变得更容易,CE增加。针孔生长被认为是通过锂沿着SiO/Si界面从现有针孔径向向外快速传输,随后从界面向外对SiO进行锂化而发生的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验