Suppr超能文献

利用芯片上的肠道-肝脏模型揭示聚苯乙烯微塑料的转运、摄取及损伤情况

Revealing transport, uptake and damage of polystyrene microplastics using a gut-liver-on-a-chip.

作者信息

Wang Yushen, Han Junlei, Tang Wenteng, Zhang Xiaolong, Ding Jiemeng, Xu Zhipeng, Song Wei, Li Xinyu, Wang Li

机构信息

School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

Shandong Institute of Mechanical Design and Research, Jinan 250353, China.

出版信息

Lab Chip. 2025 Mar 25;25(7):1656-1668. doi: 10.1039/d4lc00578c.

Abstract

Microplastics (MPs) are pervasive pollutants present in various environments. They have the capability to infiltrate the human gastrointestinal tract through avenues like water and food, and ultimately accumulating within the liver. However, due to the absence of reliable platforms, the transportation, uptake, and damage of microplastics in the gut-liver axis remain unclear. Here, we present the development of a gut-liver-on-a-chip (GLOC) featuring biomimetic intestinal peristalsis and a dynamic hepatic flow environment, exploring the translocation in the intestines and accumulation in the liver of MPs following oral ingestion. In comparison to conventional co-culture platforms, this chip has the capability to mimic essential physical microenvironments found within the intestines and liver (, intestinal peristalsis and liver blood flow). It effectively reproduces the physiological characteristics of the intestine and liver (, intestinal barrier and liver metabolism). Moreover, we infused polyethylene MPs with a diameter of 100 nm into the intestinal and hepatic chambers (concentrations ranging from 0 to 1 mg mL). We observed that as intestinal peristalsis increased (0%, 1%, 3%, 5%), the transport rate of MPs decreased, while the levels of oxidative stress and damage in hepatic cells decreased correspondingly. Our GLOC elucidates the process of MP transport in the intestine and uptake in the liver following oral ingestion. It underscores the critical role of intestinal peristalsis in protecting the liver from damage, and provides a novel research platform for assessing the organ-specific effects of MPs.

摘要

微塑料(MPs)是存在于各种环境中的普遍污染物。它们能够通过水和食物等途径渗透到人体胃肠道,最终在肝脏中积累。然而,由于缺乏可靠的平台,微塑料在肠-肝轴中的运输、摄取和损伤情况仍不清楚。在此,我们展示了一种具有仿生肠道蠕动和动态肝血流环境的肠-肝芯片(GLOC)的开发,探索口服摄入后微塑料在肠道中的转运以及在肝脏中的积累。与传统的共培养平台相比,该芯片能够模拟肠道和肝脏内的基本物理微环境(即肠道蠕动和肝血流)。它有效地再现了肠道和肝脏的生理特征(即肠道屏障和肝脏代谢)。此外,我们将直径为100 nm的聚乙烯微塑料注入肠道和肝脏腔室(浓度范围为0至1 mg/mL)。我们观察到,随着肠道蠕动增加(0%、1%、3%、5%),微塑料的转运速率降低,而肝细胞中的氧化应激和损伤水平相应降低。我们的肠-肝芯片阐明了口服摄入后微塑料在肠道中的运输过程以及在肝脏中的摄取情况。它强调了肠道蠕动在保护肝脏免受损伤方面的关键作用,并为评估微塑料的器官特异性效应提供了一个新的研究平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验