Department of Software Engineering, Delhi Technological University, Delhi, India.
Multidisciplinary Centre of Geoinformatics, Delhi Technological University, Delhi, India.
Environ Monit Assess. 2024 Nov 26;196(12):1255. doi: 10.1007/s10661-024-13406-3.
Accurate soil pH and soil organic carbon (SOC) estimations are vital for sustainable agriculture, as pH affects nutrient availability, and SOC is crucial for soil health and fertility. Hyperspectral imaging provides a faster, non-destructive, and economical alternative to standard soil testing. The study utilizes imaging spectroscopic data from the Africa Soil Information Service (AfSIS) and Land Use and Coverage Area Frame Survey (LUCAS-2009) hyperspectral datasets, capturing spatially distributed spectral information. Machine learning (ML) approaches using high-dimensional spectral bands can be computationally expensive, while those using spectral indices are typically limited to multispectral data. This study addresses these challenges by comparing soil pH and SOC prediction using ML models, with both existing spectral indices and individual hyperspectral bands as input features. Results demonstrate that hyperspectral bands outperform existing indices in predictive accuracy, with R values ranging from 0.8 to 0.94 for both soil pH and SOC. To further enhance prediction performance, this study proposes novel spectral indices-soil pH index (SPI) and soil organic carbon index (SOCI)-specifically designed for hyperspectral data using principal component analysis (PCA) and artificial neural networks (ANN). The proposed SPI and SOCI indices address multicollinearity issues and high dimensionality in raw spectral bands, significantly improving predictive accuracy. The SPI and SOCI indices achieve R values of 0.86 for AfSIS soil pH, 0.945 for LUCAS-2009 soil pH, 0.952 for AfSIS SOC, and 0.963 for LUCAS-2009 SOC. These results show that the proposed spectral indices provide a practical solution for precision agriculture, enhancing soil pH and SOC estimations.
准确的土壤 pH 值和土壤有机碳 (SOC) 估测对可持续农业至关重要,因为 pH 值影响养分的可用性,而 SOC 则对土壤健康和肥力至关重要。高光谱成像是一种比标准土壤测试更快、非破坏性且经济的替代方法。本研究利用来自非洲土壤信息服务 (AfSIS) 和土地利用和覆盖面积框架调查 (LUCAS-2009) 高光谱数据集的成像光谱数据,捕捉空间分布的光谱信息。使用高维光谱波段的机器学习 (ML) 方法可能计算成本高昂,而使用光谱指数的方法通常仅限于多光谱数据。本研究通过使用 ML 模型比较土壤 pH 值和 SOC 预测,使用现有的光谱指数和单个高光谱波段作为输入特征,解决了这些挑战。结果表明,高光谱波段在预测精度方面优于现有的指数,土壤 pH 值和 SOC 的 R 值范围分别为 0.8 至 0.94。为了进一步提高预测性能,本研究提出了新的光谱指数——土壤 pH 指数 (SPI) 和土壤有机碳指数 (SOCI),这些指数是使用主成分分析 (PCA) 和人工神经网络 (ANN) 专门为高光谱数据设计的。所提出的 SPI 和 SOCI 指数解决了原始光谱波段中的多重共线性问题和高维性问题,显著提高了预测精度。SPI 和 SOCI 指数在 AfSIS 土壤 pH 值方面达到 0.86 的 R 值,在 LUCAS-2009 土壤 pH 值方面达到 0.945,在 AfSIS SOC 方面达到 0.952,在 LUCAS-2009 SOC 方面达到 0.963。这些结果表明,所提出的光谱指数为精准农业提供了一种实用的解决方案,增强了土壤 pH 值和 SOC 的估测。