Suppr超能文献

评估用于预测视网膜年龄的深度学习算法的可重复性。

Evaluating the reproducibility of a deep learning algorithm for the prediction of retinal age.

作者信息

Zoellin Jay Rodney Toby, Turgut Ferhat, Chen Ruiye, Saad Amr, Giesser Samuel D, Sommer Chiara, Guignard Viviane, Ihle Jonas, Mono Marie-Louise, Becker Matthias D, Zhu Zhuoting, Somfai Gábor Márk

机构信息

Department of Ophthalmology, Stadtspital Triemli: Stadtspital Zurich Triemli, Birmensdorferstrasse 497, CH-8063, Zurich, Switzerland.

Spross Research Institute, Zurich, Switzerland.

出版信息

Geroscience. 2025 Apr;47(2):2541-2554. doi: 10.1007/s11357-024-01445-0. Epub 2024 Nov 26.

Abstract

Recently, a deep learning algorithm (DLA) has been developed to predict the chronological age from retinal images. The Retinal Age Gap (RAG), a deviation between predicted age from retinal images (Retinal Age, RA) and chronological age, correlates with mortality and age-related diseases. This study evaluated the reliability and accuracy of RA predictions and analyzed various factors that may influence them. We analyzed two groups of participants: Intravisit and Intervisit, both imaged by color fundus photography. RA was predicted using an established algorithm. The Intervisit group comprised 26 subjects, imaged in two sessions. The Intravisit group had 41 subjects, of whom each eye was photographed twice in one session. The mean absolute test-retest difference in predicted RA was 2.39 years for Intervisit and 2.13 years for Intravisit, with the latter showing higher prediction variability. The chronological age was predicted accurately from fundus photographs. Subsetting image pairs based on differential image quality reduced test-retest discrepancies by up to 50%, but mean image quality was not correlated with retest outcomes. Marked diurnal oscillations in RA predictions were observed, with a significant overestimation in the afternoon compared to the morning in the Intravisit cohort. The order of image acquisition across imaging sessions did not influence RA prediction and subjective age perception did not predict RAG. Inter-eye consistency exceeded 3 years. Our study is the first to explore the reliability of RA predictions. Consistent image quality enhances retest outcomes. The observed diurnal variations in RA predictions highlight the need for standardized imaging protocols, but RAG could soon be a reliable metric in clinical investigations.

摘要

最近,一种深度学习算法(DLA)已被开发出来,用于从视网膜图像预测实际年龄。视网膜年龄差距(RAG),即视网膜图像预测年龄(视网膜年龄,RA)与实际年龄之间的偏差,与死亡率和年龄相关疾病相关。本研究评估了RA预测的可靠性和准确性,并分析了可能影响它们的各种因素。我们分析了两组参与者:访内组和访间组,两组均通过彩色眼底摄影成像。使用既定算法预测RA。访间组包括26名受试者,分两次成像。访内组有41名受试者,其中每只眼睛在一次检查中拍摄两次。访间组预测RA的平均绝对重测差异为2.39岁,访内组为2.13岁,后者显示出更高的预测变异性。从眼底照片中可以准确预测实际年龄。根据图像质量差异对图像对进行子集划分可将重测差异降低多达50%,但平均图像质量与重测结果无关。观察到RA预测存在明显的昼夜波动,与访内队列中的上午相比,下午存在显著高估。成像检查之间的图像采集顺序不影响RA预测,主观年龄感知也不能预测RAG。双眼一致性超过3年。我们的研究是首次探索RA预测的可靠性。一致的图像质量可提高重测结果。观察到的RA预测昼夜变化突出了标准化成像方案的必要性,但RAG可能很快成为临床研究中一个可靠的指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e4/11979088/abd01c2d517c/11357_2024_1445_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验