Liu Yuncheng, Chen Shiqiang, Li Junliang, Song Zengfei, Wang Jihui, Ren Xiping, Qian Yongdong, Ouyang Wei
College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, People's Republic of China.
J Appl Physiol (1985). 2025 Jan 1;138(1):31-44. doi: 10.1152/japplphysiol.00778.2024. Epub 2024 Nov 26.
The aim of this study is to investigate the differential impacts of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on neural circuit dynamics and neuronal firing in the hippocampal CA1 subregion (CA1) region and medial entorhinal cortex (MEC) of mice. Forty-two male ICR mice were randomized into control, HIIT, and MICT groups. Electrophysiological recordings were performed pre- and postintervention to assess neural circuit dynamics and neuronal firing patterns in the CA1-MEC pathway. Both exercise protocols increased local field potential (LFP) coherence, with MICT showing a more pronounced effect on δ and γ coherences ( < 0.05). Both modalities reduced δ power spectral density (PSD) (HIIT, < 0.05; MICT, < 0.01) and elevated θ, β, and γ PSDs. Neuronal firing frequency improved in both CA1 and MEC following HIIT and MICT ( < 0.05). HIIT enhanced firing regularity in CA1 ( < 0.05), whereas MICT improved regularity in both regions ( < 0.05). Both protocols reduced firing latency (HIIT, < 0.05; MICT, < 0.01) and enhanced burst firing ratio, interburst interval (IBI), burst duration (BD), and LFP phase locking ( < 0.05 or < 0.01). Notably, MICT significantly improved spatial working memory and novel recognition abilities, as evidenced by increased novel arm time, entries, and preference index ( < 0.01). This study reveals that both HIIT and MICT positively impact neural processing and information integration in the CA1-MEC network of mice. Notably, MICT exhibits a more pronounced impact on neural functional connectivity and cognitive function compared with HIIT. These findings, coupled with the similarities in hippocampal electrophysiological characteristics between rodents and humans, suggest potential exercise-mediated neural plasticity and cognitive benefits in humans. This study is the first to investigate HIIT and MICT's effects on neural activity in the mouse CA1-MEC circuit, demonstrating that exercise modulates processing, enhances integration, and boosts cognitive performance. Due to similar hippocampal electrophysiology in rodents and humans during movement and navigation, our findings suggest implications for human brain neural changes, advancing the understanding of neurophysiological mechanisms underlying exercise-cognition interactions and informing exercise recommendations for cognitive health.
本研究旨在探讨高强度间歇训练(HIIT)和中等强度持续训练(MICT)对小鼠海马CA1亚区(CA1)和内嗅皮质(MEC)神经回路动力学及神经元放电的不同影响。42只雄性ICR小鼠被随机分为对照组、HIIT组和MICT组。在干预前后进行电生理记录,以评估CA1-MEC通路中的神经回路动力学和神经元放电模式。两种运动方案均增加了局部场电位(LFP)相干性,其中MICT对δ和γ相干性的影响更为显著(P<0.05)。两种运动方式均降低了δ功率谱密度(PSD)(HIIT,P<0.05;MICT,P<0.01),并提高了θ、β和γ PSD。HIIT和MICT后,CA1和MEC中的神经元放电频率均有所改善(P<0.05)。HIIT增强了CA1中的放电规律性(P<0.05),而MICT改善了两个区域的规律性(P<0.05)。两种方案均缩短了放电潜伏期(HIIT,P<0.05;MICT,P<0.01),并提高了爆发式放电比率、爆发间期(IBI)、爆发持续时间(BD)和LFP锁相(P<0.05或P<0.01)。值得注意的是,MICT显著改善了空间工作记忆和新物体识别能力,新臂时间、进入次数和偏好指数增加证明了这一点(P<0.01)。本研究表明,HIIT和MICT均对小鼠CA1-MEC网络中的神经处理和信息整合产生积极影响。值得注意的是,与HIIT相比,MICT对神经功能连接和认知功能的影响更为显著。这些发现,再加上啮齿动物和人类海马电生理特征的相似性,表明运动可能介导人类的神经可塑性并带来认知益处。本研究首次探讨了HIIT和MICT对小鼠CA1-MEC回路神经活动的影响,表明运动可调节神经处理、增强整合并提高认知表现。由于啮齿动物和人类在运动和导航过程中海马电生理相似,我们的发现提示了对人类大脑神经变化的影响,推进了对运动-认知相互作用潜在神经生理机制的理解,并为认知健康的运动建议提供了参考。