Suppr超能文献

用于骨软骨组织工程的双相3D打印丝素填充支架的力学和物理特性

Mechanical and Physical Characterization of a Biphasic 3D Printed Silk-Infilled Scaffold for Osteochondral Tissue Engineering.

作者信息

Braxton T, Lim K, Alcala-Orozco C, Joukhdar H, Rnjak-Kovacina J, Iqbal N, Woodfield T, Wood D, Brockett C, Yang X B

机构信息

School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, U.K.

CReaTE Group, Department of Orthopaedic Surgery, University of Otago Christchurch, Christchurch 8140, New Zealand.

出版信息

ACS Biomater Sci Eng. 2024 Dec 9;10(12):7606-7618. doi: 10.1021/acsbiomaterials.4c01865. Epub 2024 Nov 26.

Abstract

Osteochondral tissue damage is a serious concern, with even minor cartilage damage dramatically increasing an individual's risk of osteoarthritis. Therefore, there is a need for an early intervention for osteochondral tissue regeneration. 3D printing is an exciting method for developing novel scaffolds, especially for creating biological scaffolds for osteochondral tissue engineering. However, many 3D printing techniques rely on creating a lattice structure, which often demonstrates poor cell bridging between filaments due to its large pore size, reducing regenerative speed and capacity. To tackle this issue, a novel biphasic scaffold was developed by a combination of 3D printed poly(ethylene glycol)-terephthalate-poly(butylene-terephthalate) (PEGT/PBT) lattice infilled with a porous silk scaffold (derived from silk fibroin) to make up a bone phase, which continued to a seamless silk top layer, representing a cartilage phase. Compression testing showed scaffolds had Young's modulus, ultimate compressive strength, and fatigue resistance that would allow for their theoretical survival during implantation and joint articulation without stress-shielding mechanosensitive cells. Fluorescent microscopy showed biphasic scaffolds could support the attachment and spreading of human mesenchymal stem cells from bone marrow (hMSC-BM). These promising results highlight the potential utilization of this novel scaffold for osteochondral tissue regeneration as well as highlighting the potential of infilling silk materials within 3D printed scaffolds to further increase their versatility.

摘要

骨软骨组织损伤是一个严重问题,即使是轻微的软骨损伤也会显著增加个体患骨关节炎的风险。因此,需要对骨软骨组织再生进行早期干预。3D打印是一种开发新型支架的令人兴奋的方法,特别是用于创建骨软骨组织工程的生物支架。然而,许多3D打印技术依赖于创建晶格结构,由于其孔径较大,这种结构在细丝之间的细胞桥接往往较差,从而降低了再生速度和能力。为了解决这个问题,通过将3D打印的聚(乙二醇)-对苯二甲酸酯-聚(丁二醇-对苯二甲酸酯)(PEGT/PBT)晶格与多孔丝支架(源自丝素蛋白)组合来开发一种新型双相支架,以构成骨相,该骨相延续到无缝的丝顶层,代表软骨相。压缩测试表明,支架具有杨氏模量、极限抗压强度和抗疲劳性,这将使其在植入和关节活动期间理论上能够存活,而不会对机械敏感细胞产生应力屏蔽。荧光显微镜显示双相支架可以支持来自骨髓的人间充质干细胞(hMSC-BM)的附着和扩散。这些有前景的结果突出了这种新型支架在骨软骨组织再生中的潜在应用,同时也突出了在3D打印支架中填充丝材料以进一步提高其多功能性的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b095/11632666/f6f39d69a763/ab4c01865_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验