Theron Michael, Blasselle Alexis, Nedellec Lisa, Ballet Pascal, Dugrenot Emmanuel, Gardette Bernard, Guerrero François, Henckes Anne, Pennec Jean-Pierre
ORPHY Laboratory, Université de Brest, Brest, France.
Tek Diving SAS, Brest, France.
J Appl Physiol (1985). 2025 Feb 1;138(2):342-357. doi: 10.1152/japplphysiol.00357.2024. Epub 2024 Nov 26.
Decompression sickness can occur in divers even when recommended decompression procedures are followed. Furthermore, the physiological state of individuals can significantly affect bubbling variability. These informations highlight the need for personalized input to improve decompression in SCUBA diving. The main objective of this study is to propose a fundamental framework for a new approach to inert gas exchanges. A physiological model of oxygen delivery to organs and tissues has been built and adapted to nitrogen. The validation of the model was made by transferring the N to CO. Under normobaric conditions (air breathing, oxygen breathing, and static apnea) and hyperbaric conditions, the O model replicates the reference physiological Po (Spearman correlation tests < 0.001). The inert gas models can simulate inert gas partial pressures under normobaric and hyperbaric conditions. However, the lack of reference values prevents direct validation of this new model. Therefore, the N model has been transferred to CO. The resulting CO model has been validated by comparing it with physiological reference values (Spearman correlation tests < 0.01). The validity of the CO model constructed from the N model demonstrates the plausibility of this physiological model of inert gas exchanges. In the context of personalized decompression procedures, the proposed model is of significant interest as it enables the integration of physiological and morphological parameters (blood and respiratory flows, alveolo-capillary diffusion, respiratory and blood volumes, oxygen consumption rate, fat mass, etc.) into a model of nitrogen saturation/desaturation, in which oxygen and CO partial pressures can also be incorporated. This is the first model of inert gas transport based on the physiology of respiratory gas. It was built for O delivery and validated against literature data; it was then transposed to N exchanges. The transposition procedure was checked by transposing the N model to CO (and validated against literature data). This model opens the possibility to integrate physiological and morphological inputs in a personalized decompression procedure in SCUBA diving.
即使潜水员遵循了推荐的减压程序,减压病仍可能发生。此外,个体的生理状态会显著影响气泡的变化。这些信息凸显了在水肺潜水中需要个性化输入以改善减压的必要性。本研究的主要目的是为一种新的惰性气体交换方法提出一个基本框架。已构建了一个向器官和组织输送氧气的生理模型,并将其应用于氮气。通过将氮模型转换为一氧化碳模型来进行模型验证。在常压条件下(呼吸空气、呼吸氧气和静态屏气)以及高压条件下,氧模型能够复制参考生理氧分压(斯皮尔曼相关性检验<0.001)。惰性气体模型可以模拟常压和高压条件下的惰性气体分压。然而,由于缺乏参考值,无法直接验证这个新模型。因此,氮模型已被转换为一氧化碳模型。通过将所得的一氧化碳模型与生理参考值进行比较(斯皮尔曼相关性检验<0.01)对其进行了验证。由氮模型构建的一氧化碳模型的有效性证明了这种惰性气体交换生理模型的合理性。在个性化减压程序的背景下,所提出的模型具有重要意义,因为它能够将生理和形态学参数(血液和呼吸流量、肺泡 - 毛细血管扩散、呼吸和血液容量、氧消耗率、脂肪量等)整合到一个氮气饱和/脱饱和模型中,其中还可以纳入氧气和一氧化碳分压。这是第一个基于呼吸气体生理学的惰性气体传输模型。它是为氧气输送而构建并根据文献数据进行验证的;然后将其转换用于氮气交换。通过将氮模型转换为一氧化碳(并根据文献数据进行验证)来检查转换过程。该模型为在水肺潜水的个性化减压程序中整合生理和形态学输入提供了可能性。