Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan.
Pathology Informatics Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan.
Curr Oncol. 2024 Nov 15;31(11):7180-7189. doi: 10.3390/curroncol31110530.
Prostate cancer (PCa) is a clinically heterogeneous disease. Predicting clinically significant PCa with low-intermediate prostate-specific antigen (PSA), which often includes aggressive cancers, is imperative. This study evaluated the predictive accuracy of deep learning analysis using multimodal medical data focused on clinically significant PCa in patients with PSA ≤ 20 ng/mL. Our cohort study included 178 consecutive patients who underwent ultrasound-guided prostate biopsy. Deep learning analyses were applied to predict clinically significant PCa. We generated receiver operating characteristic curves and calculated the corresponding area under the curve (AUC) to assess the prediction. The AUC of the integrated medical data using our multimodal deep learning approach was 0.878 (95% confidence interval [CI]: 0.772-0.984) in all patients without PSA restriction. Despite the reduced predictive ability of PSA when restricted to PSA ≤ 20 ng/mL ( = 122), the AUC was 0.862 (95% CI: 0.723-1.000), complemented by imaging data. In addition, we assessed clinical presentations and images belonging to representative false-negative and false-positive cases. Our multimodal deep learning approach assists physicians in determining treatment strategies by predicting clinically significant PCa in patients with PSA ≤ 20 ng/mL before biopsy, contributing to personalized medical workflows for PCa management.
前列腺癌(PCa)是一种临床表现异质性较大的疾病。预测前列腺特异性抗原(PSA)低-中水平的具有临床意义的 PCa 至关重要,因为这类 PSA 水平通常包括侵袭性癌症。本研究评估了针对 PSA≤20ng/ml 患者具有临床意义的 PCa 的多模态医学数据的深度学习分析的预测准确性。我们的队列研究纳入了 178 例连续接受超声引导下前列腺活检的患者。对深度学习分析进行了应用,以预测具有临床意义的 PCa。我们生成了受试者工作特征曲线,并计算了相应的曲线下面积(AUC)来评估预测。在没有 PSA 限制的所有患者中,我们的多模态深度学习方法整合医学数据的 AUC 为 0.878(95%置信区间 [CI]:0.772-0.984)。尽管当 PSA 限制在 PSA≤20ng/ml 时,预测能力有所降低( = 122),AUC 仍为 0.862(95%CI:0.723-1.000),并补充了影像学数据。此外,我们评估了属于代表性假阴性和假阳性病例的临床表现和图像。我们的多模态深度学习方法通过在活检前预测 PSA≤20ng/ml 患者的具有临床意义的 PCa,帮助医生确定治疗策略,为 PCa 管理的个性化医疗工作流程做出了贡献。