Suppr超能文献

前列腺癌分类的多模态深度学习与机器学习融合技术的系统综述

A Systematic Review of Multimodal Deep Learning and Machine Learning Fusion Techniques for Prostate Cancer Classification.

作者信息

Manzoor Farhana, Gupta Vibhuti, Pinky Lubna, Wang Zhanwei, Chen Zhenbang, Deng Youping, Neupane Subash

机构信息

Department of Computer Science and Data Science, School of Applied Computational Sciences, Meharry Medical College, Nashville, TN 37208, USA.

Department of Biomedical Data Science, School of Applied Computational Sciences, Meharry Medical College, Nashville, TN 37208, USA.

出版信息

medRxiv. 2025 Aug 11:2025.08.07.25333235. doi: 10.1101/2025.08.07.25333235.

Abstract

Prostate cancer remains one of the most prevalent malignancies and a leading cause of cancer-related deaths among men worldwide. Despite advances in traditional diagnostic methods such as Prostate-specific antigen testing, digital rectal examination, and multiparametric Magnetic resonance imaging, these approaches remain constrained by modality-specific limitations, suboptimal sensitivity and specificity, and reliance on expert interpretation, which may introduce diagnostic inconsistency. Multimodal deep learning and machine learning fusion, which integrates diverse data sources including imaging, clinical, and molecular information, has emerged as a promising strategy to enhance the accuracy of prostate cancer classification. This review aims to outline the current state-of-the-art deep learning and machine learning based fusion techniques for prostate cancer classification, focusing on their implementation, performance, challenges, and clinical applicability. Following the PRISMA guidelines, a total of 131 studies were identified, of which 27 met the inclusion criteria for studies published between 2021 and 2025. Extracted data included input techniques, deep learning architectures, performance metrics, and validation approaches. The majority of the studies used an early fusion approach with convolutional neural networks to integrate the data. Clinical and imaging data were the most commonly used modalities in the reviewed studies for prostate cancer research. Overall, multimodal deep learning and machine learning-based fusion significantly advances prostate cancer classification and outperform unimodal approaches.

摘要

前列腺癌仍然是全球男性中最常见的恶性肿瘤之一,也是癌症相关死亡的主要原因。尽管在传统诊断方法如前列腺特异性抗原检测、直肠指检和多参数磁共振成像方面取得了进展,但这些方法仍然受到特定模态限制、次优的敏感性和特异性以及依赖专家解读的制约,这可能会导致诊断不一致。多模态深度学习和机器学习融合,整合了包括成像、临床和分子信息在内的多种数据源,已成为提高前列腺癌分类准确性的一种有前景的策略。本综述旨在概述当前基于深度学习和机器学习的前列腺癌分类融合技术的现状,重点关注其实施、性能、挑战和临床适用性。按照PRISMA指南,共识别出131项研究,其中27项符合2021年至2025年发表的研究的纳入标准。提取的数据包括输入技术、深度学习架构、性能指标和验证方法。大多数研究使用早期融合方法与卷积神经网络来整合数据。临床和成像数据是综述研究中前列腺癌研究最常用的模态。总体而言,基于多模态深度学习和机器学习的融合显著推进了前列腺癌分类,并且优于单模态方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616f/12363724/25d5c2f0fb02/nihpp-2025.08.07.25333235v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验