Suppr超能文献

结合眼动追踪技术和机器学习(ML)模型测量瑞文标准推理测验。

Measuring Raven's Progressive Matrices Combining Eye-Tracking Technology and Machine Learning (ML) Models.

作者信息

Ma Shumeng, Jia Ning

机构信息

College of Education, Hebei Normal University, Shijiazhuang 050025, China.

出版信息

J Intell. 2024 Nov 13;12(11):116. doi: 10.3390/jintelligence12110116.

Abstract

Extended testing time in Raven's Progressive Matrices (RPM) can lead to increased fatigue and reduced motivation, which may impair cognitive task performance. This study explores the application of artificial intelligence (AI) in RPM by combining eye-tracking technology with machine learning (ML) models, aiming to explore new methods for improving the efficiency of RPM testing and to identify the key metrics involved. Using eye-tracking metrics as features, ten ML models were trained, with the XGBoost model demonstrating superior performance. Notably, we further refined the period of interest and reduced the number of metrics, achieving strong performance, with accuracy, precision, and recall all above 0.8, using only 60% of the response time and nine eye-tracking metrics. This study also examines the role of several key metrics in RPM and offers valuable insights for future research.

摘要

在瑞文标准推理测验(RPM)中延长测试时间会导致疲劳加剧和动机降低,这可能会损害认知任务表现。本研究通过将眼动追踪技术与机器学习(ML)模型相结合,探索人工智能(AI)在RPM中的应用,旨在探索提高RPM测试效率的新方法,并确定其中涉及的关键指标。以眼动追踪指标作为特征,训练了十个ML模型,其中XGBoost模型表现出卓越性能。值得注意的是,我们进一步细化了感兴趣的时间段并减少了指标数量,仅使用60%的反应时间和九个眼动追踪指标就实现了出色的性能,准确率、精确率和召回率均高于0.8。本研究还考察了几个关键指标在RPM中的作用,并为未来研究提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dfe/11595889/35c4f59eeed1/jintelligence-12-00116-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验