Suppr超能文献

基于SnO量子点/TiCT MXene复合材料的室温高性能氨QCM传感器

High-Performance Ammonia QCM Sensor Based on SnO Quantum Dots/TiCT MXene Composites at Room Temperature.

作者信息

Li Chong, Tao Ran, Hou Jinqiao, Wang Huanming, Fu Chen, Luo Jingting

机构信息

School of Electronic Engineering, Huainan Normal University, Huainan 232038, China.

Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

出版信息

Nanomaterials (Basel). 2024 Nov 16;14(22):1835. doi: 10.3390/nano14221835.

Abstract

Ammonia (NH) gas is prevalent in industrial production as a health hazardous gas. Consequently, it is essential to develop a straightforward, reliable, and stable NH sensor capable of operating at room temperature. This paper presents an innovative approach to modifying SnO colloidal quantum dots (CQDs) on the surface of TiCT MXene to form a heterojunction, which introduces a significant number of adsorption sites and enhances the response of the sensor. Zero-dimensional (0D) SnO quantum dots and two-dimensional (2D) TiCT MXene were prepared by solvothermal and in situ etching methods, respectively. The impact of the mass ratio between two materials on the performance was assessed. The sensor based on 12 wt% TiCT MXene/SnO composites demonstrates excellent performance in terms of sensitivity and response/recovery speed. Upon exposure to 50 ppm NH, the frequency shift in the sensor is -1140 Hz, which is 5.6 times larger than that of pure TiCT MXene and 2.8 times higher than that of SnO CQDs. The response/recovery time of the sensor for 10 ppm NH was 36/54 s, respectively. The sensor exhibited a theoretical detection limit of 73 ppb and good repeatability. Furthermore, a stable sensing performance can be maintained after 30 days. The enhanced sensor performance can be attributed to the abundant active sites provided by the accumulation/depletion layer in the TiCT/SnO heterojunction, which facilitates the adsorption of oxygen molecules. This work promotes the gas sensing application of MXenes and provides a way to improve gas sensing performance.

摘要

氨气(NH₃)气体作为一种对健康有害的气体在工业生产中普遍存在。因此,开发一种能够在室温下工作的简单、可靠且稳定的NH₃传感器至关重要。本文提出了一种在Ti₃C₂Tₓ MXene表面修饰SnO₂胶体量子点(CQDs)以形成异质结的创新方法,该方法引入了大量吸附位点并增强了传感器的响应。分别通过溶剂热法和原位蚀刻法制备了零维(0D)的SnO₂量子点和二维(2D)的Ti₃C₂Tₓ MXene。评估了两种材料的质量比对性能的影响。基于12 wt% Ti₃C₂Tₓ MXene/SnO₂复合材料的传感器在灵敏度和响应/恢复速度方面表现出优异的性能。在暴露于50 ppm NH₃时,传感器的频率偏移为-1140 Hz,这比纯Ti₃C₂Tₓ MXene大5.6倍,比SnO₂ CQDs高2.8倍。该传感器对10 ppm NH₃的响应/恢复时间分别为36/54 s。该传感器的理论检测限为73 ppb,并且具有良好的重复性。此外,30天后仍可保持稳定的传感性能。传感器性能的增强可归因于Ti₃C₂Tₓ/SnO₂异质结中积累/耗尽层提供的丰富活性位点,这有利于氧分子的吸附。这项工作推动了MXenes在气体传感方面的应用,并提供了一种提高气体传感性能的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded8/11597869/5cc703fac391/nanomaterials-14-01835-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验