Suppr超能文献

机械力依赖性山梨醇积累支持生物分子凝聚物。

Mechano-dependent sorbitol accumulation supports biomolecular condensate.

作者信息

Torrino Stephanie, Oldham William M, Tejedor Andrés R, Burgos Ignacio S, Nasr Lara, Rachedi Nesrine, Fraissard Kéren, Chauvet Caroline, Sbai Chaima, O'Hara Brendan P, Abélanet Sophie, Brau Frederic, Favard Cyril, Clavel Stephan, Collepardo-Guevara Rosana, Espinosa Jorge R, Ben-Sahra Issam, Bertero Thomas

机构信息

Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France.

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Cell. 2025 Jan 23;188(2):447-464.e20. doi: 10.1016/j.cell.2024.10.048. Epub 2024 Nov 25.

Abstract

Condensed droplets of protein regulate many cellular functions, yet the physiological conditions regulating their formation remain largely unexplored. Increasing our understanding of these mechanisms is paramount, as failure to control condensate formation and dynamics can lead to many diseases. Here, we provide evidence that matrix stiffening promotes biomolecular condensation in vivo. We demonstrate that the extracellular matrix links mechanical cues with the control of glucose metabolism to sorbitol. In turn, sorbitol acts as a natural crowding agent to promote biomolecular condensation. Using in silico simulations and in vitro assays, we establish that variations in the physiological range of sorbitol concentrations, but not glucose concentrations, are sufficient to regulate biomolecular condensates. Accordingly, pharmacological and genetic manipulation of intracellular sorbitol concentration modulates biomolecular condensates in breast cancer-a mechano-dependent disease. We propose that sorbitol is a mechanosensitive metabolite enabling protein condensation to control mechano-regulated cellular functions.

摘要

蛋白质的浓缩液滴调节着许多细胞功能,然而调节其形成的生理条件在很大程度上仍未被探索。增进我们对这些机制的理解至关重要,因为无法控制凝聚物的形成和动态变化会导致许多疾病。在此,我们提供证据表明基质硬化在体内促进生物分子凝聚。我们证明细胞外基质将机械信号与葡萄糖代谢向山梨醇的转化控制联系起来。反过来,山梨醇作为一种天然的拥挤剂促进生物分子凝聚。通过计算机模拟和体外实验,我们确定山梨醇浓度在生理范围内的变化,而非葡萄糖浓度的变化,足以调节生物分子凝聚物。因此,对细胞内山梨醇浓度进行药理和基因操作可调节乳腺癌(一种机械依赖型疾病)中的生物分子凝聚物。我们提出山梨醇是一种机械敏感代谢物,能够使蛋白质凝聚以控制机械调节的细胞功能。

相似文献

5
Modulating biomolecular condensates: a novel approach to drug discovery.调控生物分子凝聚物:一种新的药物发现方法。
Nat Rev Drug Discov. 2022 Nov;21(11):841-862. doi: 10.1038/s41573-022-00505-4. Epub 2022 Aug 16.
7
ATP-induced crosslinking of a biomolecular condensate.ATP诱导的生物分子凝聚物交联。
bioRxiv. 2023 Apr 18:2023.04.18.535486. doi: 10.1101/2023.04.18.535486.
8
In Vitro Transcription-Translation in an Artificial Biomolecular Condensate.体外转录-翻译在人工生物分子凝聚体中。
ACS Synth Biol. 2023 Jul 21;12(7):2004-2014. doi: 10.1021/acssynbio.3c00069. Epub 2023 Jun 21.
9
Regulation of biomolecular condensate dynamics by signaling.信号调控生物分子凝聚物动力学。
Curr Opin Cell Biol. 2021 Apr;69:111-119. doi: 10.1016/j.ceb.2021.01.002. Epub 2021 Feb 9.

本文引用的文献

2
Structural biases in disordered proteins are prevalent in the cell.细胞中存在大量无序蛋白质的结构偏差。
Nat Struct Mol Biol. 2024 Feb;31(2):283-292. doi: 10.1038/s41594-023-01148-8. Epub 2024 Jan 4.
3
Macromolecular condensation buffers intracellular water potential.高分子凝聚缓冲液可以调节细胞内水势。
Nature. 2023 Nov;623(7988):842-852. doi: 10.1038/s41586-023-06626-z. Epub 2023 Oct 18.
4
Liquid-liquid phase separation within fibrillar networks.纤维网络内的液-液相分离。
Nat Commun. 2023 Sep 29;14(1):6085. doi: 10.1038/s41467-023-41528-8.
6
Phase separation of Hippo signalling complexes.Hippo 信号复合物的相分离。
EMBO J. 2023 Mar 15;42(6):e112863. doi: 10.15252/embj.2022112863. Epub 2023 Feb 20.
7
Multiphase coalescence mediates Hippo pathway activation.多相聚并介导 Hippo 通路激活。
Cell. 2022 Nov 10;185(23):4376-4393.e18. doi: 10.1016/j.cell.2022.09.036. Epub 2022 Oct 31.
9
The mechanobiology of nuclear phase separation.核相分离的力学生物学
APL Bioeng. 2022 Apr 28;6(2):021503. doi: 10.1063/5.0083286. eCollection 2022 Jun.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验