R Tejedor Andrés, Aguirre Gonzalez Anne, Maristany M Julia, Chew Pin Yu, Russell Kieran, Ramirez Jorge, Espinosa Jorge R, Collepardo-Guevara Rosana
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
ACS Cent Sci. 2025 Feb 11;11(2):302-321. doi: 10.1021/acscentsci.4c01617. eCollection 2025 Feb 26.
Biomolecular condensates composed of highly charged biomolecules, such as DNA, RNA, chromatin, and nucleic-acid binding proteins, are ubiquitous in the cell nucleus. The biophysical properties of these charge-rich condensates are largely regulated by electrostatic interactions. Residue-resolution coarse-grained models that describe solvent and ions implicitly are widely used to gain mechanistic insights into the biophysical properties of condensates, offering transferability, computational efficiency, and accurate predictions for multiple systems. However, their predictive accuracy diminishes for charge-rich condensates due to the implicit treatment of solvent and ions. Here, we present Mpipi-Recharged, a residue-resolution coarse-grained model that improves the description of charge effects in biomolecular condensates containing disordered proteins, multidomain proteins, and/or disordered single-stranded RNAs. Mpipi-Recharged introduces a pair-specific asymmetric Yukawa electrostatic potential, informed by atomistic simulations. We show that this asymmetric coarse-graining of electrostatic forces captures intricate effects, such as charge blockiness, stoichiometry variations in complex coacervates, and modulation of salt concentration, without requiring explicit solvation. Mpipi-Recharged provides excellent agreement with experiments in predicting the phase behavior of highly charged condensates. Overall, Mpipi-Recharged improves the computational tools available to investigate the physicochemical mechanisms regulating biomolecular condensates, enhancing the scope of computer simulations in this field.
由DNA、RNA、染色质和核酸结合蛋白等高电荷生物分子组成的生物分子凝聚物在细胞核中普遍存在。这些富含电荷的凝聚物的生物物理性质在很大程度上受静电相互作用调节。隐式描述溶剂和离子的残基分辨率粗粒度模型被广泛用于深入了解凝聚物的生物物理性质,为多个系统提供可转移性、计算效率和准确预测。然而,由于对溶剂和离子的隐式处理,它们对富含电荷的凝聚物的预测准确性会降低。在此,我们提出了Mpipi-Recharged,这是一种残基分辨率粗粒度模型,可改进对含有无序蛋白、多结构域蛋白和/或无序单链RNA的生物分子凝聚物中电荷效应的描述。Mpipi-Recharged引入了一种由原子模拟提供信息的对特异性不对称 Yukawa 静电势。我们表明,这种静电力的不对称粗粒度捕捉了复杂的效应,如电荷块状、复合凝聚物中的化学计量变化以及盐浓度的调节,而无需明确的溶剂化。Mpipi-Recharged在预测高电荷凝聚物的相行为方面与实验结果高度吻合。总体而言,Mpipi-Recharged改进了用于研究调节生物分子凝聚物的物理化学机制的计算工具,扩大了该领域计算机模拟的范围。