Sato Junya, Yanagawa Masahiro, Nishigaki Daiki, Hata Akinori, Sakao Yukinori, Sakakura Noriaki, Yatabe Yasushi, Shintani Yasushi, Kido Shoji, Tomiyama Noriyuki
Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Artificial Intelligence in Diagnostic Radiology, Osaka University Graduate School of Medicine, Osaka, Japan.
Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan.
Clin Lung Cancer. 2025 Jan;26(1):58-71. doi: 10.1016/j.cllc.2024.10.015. Epub 2024 Nov 7.
To compare the variability of quantitative values from lung adenocarcinoma CT images independently assessed by 2 radiologists and AI-based software under different display conditions, and to identify predictors of pathological lymph node metastasis (LNM), disease-free survival (DFS), and overall survival (OS).
Preoperative CT images of 307 patients were displayed under 4 conditions: lung-1, lung-2, mediastinum-1, and mediastinum-2. Two radiologists (R1, R2) measured total diameter (tD) and the longest solid diameter (sD) under each condition. The AI-based software automatically detected lung nodules, providing tD, sD, total volume (tV), and solid volume (sV).
All measurements by R1 and R2 with AI-based software were identical. Four out of the 8 measurements showed significant variation between R1 and R2. For LNM, multivariate logistic regression identified significant indicators including sD at mediastinum-2 of R1, sD at mediastinum-1 and mediastinum-2 of R2, tV, and the proportion of sV to tV (sV/tV) of AI-based software. For DFS, multivariate Cox regression identified sD at lung-1 of R1, the proportions of sD to tD at lung-2 of R1, sD at lung-2 and mediastinum-1 of R2, tV, and sV/tV of AI-based software as significant. For OS, multivariate Cox regression identified sD at lung-1 and mediastinum-2 of R1, tD at lung-2 of R2, sD at mediastinum-1 of R2, sV, and sV/tV of AI-based software as significant.
Radiologists' CT measurements were significant predictors of LNM and prognosis, but variability existed among radiologists and display conditions. AI-based software can provide accurate and reproducible indicators for predicting LNM and prognosis.
比较两名放射科医生和基于人工智能的软件在不同显示条件下独立评估的肺腺癌CT图像定量值的变异性,并确定病理淋巴结转移(LNM)、无病生存期(DFS)和总生存期(OS)的预测因素。
307例患者的术前CT图像在4种条件下显示:肺-1、肺-2、纵隔-1和纵隔-2。两名放射科医生(R1、R2)在每种条件下测量总直径(tD)和最长实性直径(sD)。基于人工智能的软件自动检测肺结节,提供tD、sD、总体积(tV)和实性体积(sV)。
R1和R2使用基于人工智能的软件进行的所有测量结果均一致。8项测量中有4项在R1和R2之间显示出显著差异。对于LNM,多因素逻辑回归确定的显著指标包括R1在纵隔-2时的sD、R2在纵隔-1和纵隔-2时的sD、tV以及基于人工智能的软件的sV与tV的比例(sV/tV)。对于DFS,多因素Cox回归确定R1在肺-1时的sD、R1在肺-2时的sD与tD的比例、R2在肺-2和纵隔-1时的sD、tV以及基于人工智能的软件的sV/tV为显著指标。对于OS,多因素Cox回归确定R1在肺-1和纵隔-2时的sD、R2在肺-2时的tD、R2在纵隔-1时的sD、sV以及基于人工智能的软件的sV/tV为显著指标。
放射科医生的CT测量是LNM和预后的重要预测指标,但放射科医生之间以及显示条件之间存在变异性。基于人工智能的软件可为预测LNM和预后提供准确且可重复的指标。