Suppr超能文献

使用术前多期 MDCT、18F-FDG PET 和临床特征预测浸润性肺腺癌的高危生长模式。

Prediction of High-risk Growth Pattern in Invasive Lung Adenocarcinoma using Preoperative Multiphase MDCT, 18F-FDG PET, and Clinical Features.

机构信息

Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China.

Department of Medical Imaging, 32268 Unit, Dali, Yunnan, China.

出版信息

Curr Med Imaging. 2024;20:e15734056352795. doi: 10.2174/0115734056352795241030102554.

Abstract

OBJECTIVE

This study aimed to establish a model based on Multi-detector Computed Tomography (MDCT), F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (F-FDG PET/CT), and clinical features for predicting different growth patterns of preoperative Invasive Adenocarcinoma (IAC).

METHODS

This retrospective study included 357 patients diagnosed with IAC who underwent surgical treatment. According to pathological subtypes, IAC was classified into low-risk growth patterns (lepidic, acinar) and high-risk growth patterns (papillary, micropapillary, and solid). The clinical features of patients, preoperative MDCT, and F-FDG PET imaging characteristics were collected. Logistic regression analysis was used to determine the independent risk factors for the high-risk growth pattern of IAC and construct models for predicting the high-/low-risk growth patterns of IAC. Receiver operating characteristics and calibration curves were plotted and Decision Curve Analysis (DCA) was performed to evaluate the performance and clinical benefits of the models, respectively.

RESULTS

Gender, tumor location, size, spiculation, and SUVavg were independent risk factors for high-risk growth patterns of IAC. The PET/CT imaging- clinical characteristics combined model could well identify high-/low-risk growth patterns of IAC (AUC=0.789), which outperformed the CT model (AUC=0.689, p=0.0012), PET model (AUC=0.742, p=0.0022), and clinical model (AUC=0.607, p<0.0001). The calibration curve indicated good coherence between all model predictions and actual observations in both training and test sets (p>0.05). DCA revealed the highest clinical benefit of PET/CT imaging-clinical characteristics combined model in identifying the high-risk growth pattern of IAC.

CONCLUSION

The PET/CT imaging-clinical model based on multiphase MDCT features, F-FDG PET features, and clinical characteristics could predict the high-risk growth pattern of IAC preoperatively, aiding clinicians in deciding personalized treatment strategies.

摘要

目的

本研究旨在建立一种基于多排螺旋计算机断层扫描(MDCT)、氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(F-FDG PET/CT)和临床特征的模型,以预测术前浸润性腺癌(IAC)的不同生长模式。

方法

本回顾性研究纳入了 357 例接受手术治疗的 IAC 患者。根据病理亚型,IAC 分为低危生长模式(鳞屑状、腺泡状)和高危生长模式(乳头状、微乳头状和实体状)。收集患者的临床特征、术前 MDCT 和 F-FDG PET 影像学特征。采用逻辑回归分析确定 IAC 高危生长模式的独立危险因素,并构建预测 IAC 高/低危生长模式的模型。绘制受试者工作特征曲线和校准曲线,并进行决策曲线分析(DCA),分别评估模型的性能和临床获益。

结果

性别、肿瘤位置、大小、分叶征和 SUVavg 是 IAC 高危生长模式的独立危险因素。PET/CT 影像-临床特征联合模型能较好地识别 IAC 的高/低危生长模式(AUC=0.789),优于 CT 模型(AUC=0.689,p=0.0012)、PET 模型(AUC=0.742,p=0.0022)和临床模型(AUC=0.607,p<0.0001)。校准曲线表明,在训练集和测试集中,所有模型预测与实际观察之间均具有良好的一致性(p>0.05)。DCA 显示,PET/CT 影像-临床特征联合模型在识别 IAC 高危生长模式方面具有最高的临床获益。

结论

基于多期 MDCT 特征、F-FDG PET 特征和临床特征的 PET/CT 影像-临床模型可预测术前 IAC 的高危生长模式,有助于临床医生制定个体化治疗策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验