Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China.
The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, P.R. China.
J Nanobiotechnology. 2024 Nov 27;22(1):735. doi: 10.1186/s12951-024-03013-2.
Radiotherapy (RT) stands as a frontline treatment modality in clinical breast oncology, yet challenges like ROS reduction, high toxicity, non-selectivity, and hypoxia hinder efficacy. Additionally, RT administered at different doses can induce varying degrees of radioimmunotherapy. High doses of radiation (>10 Gy) may result in immune suppression, while moderate doses (4-10 Gy), although capable of mitigating the immune suppression caused by high-dose radiation, are often insufficient in effectively killing tumor cells. Therefore, enhancing the generation of ROS and ameliorating the tumor hypoxic immune-suppressive microenvironment at moderate radiation doses could potentially drive radiation-induced immune responses, offering a fundamental solution to the limitations of RT. In this study, a novel multifunctional nanoplatform, RMLF, integrating a Ru (II) complex into folate-functionalized liposomes with BSA-MnO nanoparticles was proposed. Orthogonal experimental optimization enhances radiosensitization via increasing accumulation in cancer cells, elevating ROS, and contributing to a dual enhancement of the cGAS-STING-dependent type I IFN signaling pathway, aimed to overcome the insufficient DAMPs typically seen in the conventional RT at 4 Gy. Such a strategy effectively activated cytotoxic T lymphocytes for infiltration into tumor tissues and promoted the polarization of tumor-associated macrophages from the M2 to M1 phenotype, substantially bolstering immune memory responses. This pioneering approach represents the first use of a ruthenium complex in radioimmunotherapy, activating the cGAS-STING pathway to amplify immune responses, overcome RT resistance, and extend immunotherapeutic potential.
放射治疗(RT)是临床乳腺癌学中的一种主要治疗方式,但存在诸如活性氧(ROS)减少、高毒性、非选择性和缺氧等挑战,限制了其疗效。此外,不同剂量的 RT 可以诱导不同程度的放射免疫治疗。高剂量辐射(>10Gy)可能导致免疫抑制,而中剂量(4-10Gy)虽然能够减轻高剂量辐射引起的免疫抑制,但在有效杀死肿瘤细胞方面往往不足。因此,增强 ROS 的产生并改善中剂量辐射下的肿瘤缺氧免疫抑制微环境,可能会驱动辐射诱导的免疫反应,为 RT 的局限性提供基本的解决方案。在这项研究中,提出了一种新型多功能纳米平台 RMLF,它将钌(II)配合物整合到叶酸功能化的脂质体中,并结合 BSA-MnO 纳米粒子。正交实验优化通过增加在癌细胞中的积累、提高 ROS 水平以及促进 cGAS-STING 依赖性 I 型 IFN 信号通路的双重增强,增强放射增敏作用,旨在克服传统 RT 在 4Gy 时通常存在的不足的 DAMPs。这种策略有效地激活了浸润到肿瘤组织中的细胞毒性 T 淋巴细胞,并促进肿瘤相关巨噬细胞从 M2 向 M1 表型的极化,大大增强了免疫记忆反应。这种开创性的方法代表了钌配合物在放射免疫治疗中的首次应用,激活了 cGAS-STING 通路,放大了免疫反应,克服了 RT 抵抗,并扩展了免疫治疗的潜力。