Suppr超能文献

评估用于脉搏血氧饱和度测定的人工智能方法:性能、临床准确性及综合偏差分析

Evaluating AI Methods for Pulse Oximetry: Performance, Clinical Accuracy, and Comprehensive Bias Analysis.

作者信息

Cabanas Ana María, Sáez Nicolás, Collao-Caiconte Patricio O, Martín-Escudero Pilar, Pagán Josué, Jiménez-Herranz Elena, Ayala José L

机构信息

Departamento de Física, FACI, Universidad de Tarapacá, Arica 1000000, Chile.

Dirección de Gestión Digital y Transparencia, Universidad de Tarapacá, Arica 1000000, Chile.

出版信息

Bioengineering (Basel). 2024 Oct 24;11(11):1061. doi: 10.3390/bioengineering11111061.

Abstract

Blood oxygen saturation (SpO) is vital for patient monitoring, particularly in clinical settings. Traditional SpO estimation methods have limitations, which can be addressed by analyzing photoplethysmography (PPG) signals with artificial intelligence (AI) techniques. This systematic review, following PRISMA guidelines, analyzed 183 unique references from WOS, PubMed, and Scopus, with 26 studies meeting the inclusion criteria. The review examined AI models, key features, oximeters used, datasets, tested saturation intervals, and performance metrics while also assessing bias through the QUADAS-2 criteria. Linear regression models and deep neural networks (DNNs) emerged as the leading AI methodologies, utilizing features such as statistical metrics, signal-to-noise ratios, and intricate waveform morphology to enhance accuracy. Gaussian Process models, in particular, exhibited superior performance, achieving Mean Absolute Error (MAE) values as low as 0.57% and Root Mean Square Error (RMSE) as low as 0.69%. The bias analysis highlighted the need for better patient selection, reliable reference standards, and comprehensive SpO intervals to improve model generalizability. A persistent challenge is the reliance on non-invasive methods over the more accurate arterial blood gas analysis and the limited datasets representing diverse physiological conditions. Future research must focus on improving reference standards, test protocols, and addressing ethical considerations in clinical trials. Integrating AI with traditional physiological models can further enhance SpO estimation accuracy and robustness, offering significant advancements in patient care.

摘要

血氧饱和度(SpO)对于患者监测至关重要,尤其是在临床环境中。传统的SpO估计方法存在局限性,可通过利用人工智能(AI)技术分析光电容积脉搏波描记图(PPG)信号来解决这些局限性。本系统评价遵循PRISMA指南,分析了来自Web of Science(WOS)、PubMed和Scopus的183篇独特参考文献,其中26项研究符合纳入标准。该评价考察了AI模型、关键特征、使用的血氧仪、数据集、测试的饱和度区间和性能指标,同时还通过QUADAS-2标准评估了偏倚。线性回归模型和深度神经网络(DNN)成为主要的AI方法,利用统计指标、信噪比和复杂的波形形态等特征来提高准确性。特别是高斯过程模型表现出卓越的性能,平均绝对误差(MAE)值低至0.57%,均方根误差(RMSE)低至0.69%。偏倚分析强调需要更好地选择患者、可靠的参考标准和全面的SpO区间,以提高模型的通用性。一个持续存在的挑战是依赖非侵入性方法而非更准确的动脉血气分析,以及代表不同生理状况的数据集有限。未来的研究必须专注于改进参考标准、测试方案以及解决临床试验中的伦理问题。将AI与传统生理模型相结合可以进一步提高SpO估计的准确性和稳健性,为患者护理带来重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8857/11591227/10f3694af0a5/bioengineering-11-01061-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验