Kandus Alejandra, Calzetta Esteban
Departamento de Ciências Exatas, Universidade Estadual de Santa Cruz, Rodov. J. Amado km 16, Salobrinho, Ilhéus 45662-900, BA, Brazil.
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires CP 1428, Argentina.
Entropy (Basel). 2024 Oct 30;26(11):927. doi: 10.3390/e26110927.
The propagation speeds of excitations are a crucial input in the modeling of interacting systems of particles. In this paper, we assume the microscopic physics is described by a kinetic theory for massless particles, which is approximated by a generalized relaxation time approximation (RTA) where the relaxation time depends on the energy of the particles involved. We seek a solution of the kinetic equation by assuming a parameterized one-particle distribution function (1-pdf) which generalizes the Chapman-Enskog (Ch-En) solution to the RTA. If developed to all orders, this would yield an asymptotic solution to the kinetic equation; we restrict ourselves to an approximate solution by truncating the Ch-En series to the second order. Our generalized Ch-En solution contains undetermined space-time-dependent parameters, and we derive a set of dynamical equations for them by applying the moments method. We check that these dynamical equations lead to energy-momentum conservation and positive entropy production. Finally, we compute the propagation speeds for fluctuations away from equilibrium from the linearized form of the dynamical equations. Considering relaxation times of the form τ=τ0(-βμpμ)-a, with -∞<a<2, where βμ=uμ/T is the temperature vector in the Landau frame, we show that the Anderson-Witting prescription a=1 yields the fastest speed in all scalar, vector and tensor sectors. This fact ought to be taken into consideration when choosing the best macroscopic description for a given physical system.
激发的传播速度是粒子相互作用系统建模中的关键输入。在本文中,我们假设微观物理由无质量粒子的动力学理论描述,该理论通过广义弛豫时间近似(RTA)进行近似,其中弛豫时间取决于所涉及粒子的能量。我们通过假设一个参数化的单粒子分布函数(1-pdf)来寻求动力学方程的解,该函数将查普曼-恩斯科格(Ch-En)解推广到RTA。如果展开到所有阶次,这将得到动力学方程的渐近解;我们通过将Ch-En级数截断到二阶来限制自己得到一个近似解。我们的广义Ch-En解包含时空相关的待定参数,并且我们通过应用矩量法为它们推导了一组动力学方程。我们验证这些动力学方程导致能量-动量守恒和正熵产生。最后,我们从动力学方程的线性化形式计算远离平衡的涨落的传播速度。考虑弛豫时间形式为τ = τ0(-βμpμ)-a,其中-∞ < a < 2,其中βμ = uμ/T是朗道框架中的温度矢量,我们表明安德森-维廷规定a = 1在所有标量、矢量和张量扇区中产生最快的速度。在为给定物理系统选择最佳宏观描述时,应该考虑到这一事实。