Li Linglei, Li Long, Gou Guoyuan, Jia Lang, Zhang Yonghu, Shen Xiaogang, Cao Ruge, Wang Lili
College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Foods. 2024 Nov 7;13(22):3560. doi: 10.3390/foods13223560.
This study aimed to achieve a precise and non-destructive quantification of the amounts of total starch, protein, β-glucan, and fat in oats using near-infrared technology in conjunction with chemometrics methods. Eight preprocessing methods (SNV, MSC, Nor, DE, FD, SD, BC, SS) were employed to process the original spectra. Subsequently, the optimal PLS model was obtained by integrating feature wavelength selection algorithms (CARS, SPA, UVE, LAR). After SD-SPA, total starch reached its optimal state ( = 0.768, = 2.057). Protein achieved the best result after MSC-CARS ( = 0.853, = 1.142). β-glucan reached the optimal value after BC-SPA ( = 0.759, = 0.315). Fat achieved the optimal state after SS-SPA ( = 0.903, = 0.692). The research has shown the performance of the portable FT-NIR for a rapid and non-destructive quantification of nutritional components in oats, holding significant importance for quality control and quality assessment within the oat industry.
本研究旨在结合化学计量学方法,利用近红外技术对燕麦中的总淀粉、蛋白质、β-葡聚糖和脂肪含量进行精确且无损的定量分析。采用了八种预处理方法(标准正态变量变换(SNV)、多元散射校正(MSC)、归一化(Nor)、导数(DE)、傅里叶变换(FD)、平滑(SD)、基线校正(BC)、标准正态变量变换与平滑(SS))对原始光谱进行处理。随后,通过整合特征波长选择算法(竞争性自适应重加权算法(CARS)、连续投影算法(SPA)、无信息变量消除法(UVE)、最小角回归法(LAR))获得了最优的偏最小二乘法(PLS)模型。经过标准正态变量变换与平滑-连续投影算法(SD-SPA)后,总淀粉达到最优状态(R² = 0.768,RMSE = 2.057)。经过多元散射校正-竞争性自适应重加权算法(MSC-CARS)后,蛋白质取得了最佳结果(R² = 0.853,RMSE = 1.142)。经过基线校正-连续投影算法(BC-SPA)后,β-葡聚糖达到最优值(R² = 0.759,RMSE = 0.315)。经过标准正态变量变换与平滑-连续投影算法(SS-SPA)后,脂肪达到最优状态(R² = 0.903,RMSE = 0.692)。该研究展示了便携式傅里叶变换近红外光谱仪(FT-NIR)对燕麦营养成分进行快速无损定量分析的性能,对燕麦产业的质量控制和质量评估具有重要意义。