Al Mopti Abdulrahman, Alqahtani Abdulsalam, Alshehri Ali H D, Li Chunhui, Nabi Ghulam
Centre for Medical Engineering and Technology, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.
Radiology Department, College of Applied Medical Sciences, Najran University, Najran 55461, Saudi Arabia.
Cancers (Basel). 2024 Nov 8;16(22):3772. doi: 10.3390/cancers16223772.
Upper tract urothelial carcinoma (UTUC) presents significant challenges in prognostication due to its rarity and complex anatomy. This study introduces a novel approach integrating perirenal fat (PRF) radiomics with clinical factors to enhance prognostic accuracy in UTUC. The study retrospectively analyzed 103 UTUC patients who underwent radical nephroureterectomy. PRF radiomics features were extracted from preoperative CT scans using a semi-automated segmentation method. Three prognostic models were developed: clinical, radiomics, and combined. Model performance was assessed using concordance index (C-index), time-dependent Area Under the Curve (AUC), and integrated Brier score. : The combined model demonstrated superior performance (C-index: 0.784, 95% CI: 0.707-0.861) compared to the radiomics (0.759, 95% CI: 0.678-0.840) and clinical (0.653, 95% CI: 0.547-0.759) models. Time-dependent AUC analysis revealed the radiomics model's particular strength in short-term prognosis (12-month AUC: 0.9281), while the combined model excelled in long-term predictions (60-month AUC: 0.8403). Key PRF radiomics features showed stronger prognostic value than traditional clinical factors. Integration of PRF radiomics with clinical data significantly improves prognostic accuracy in UTUC. This approach offers a more nuanced analysis of the tumor microenvironment, potentially capturing early signs of tumor invasion not visible through conventional imaging. The semi-automated PRF segmentation method presents advantages in reproducibility and ease of use, facilitating potential clinical implementation.
上尿路尿路上皮癌(UTUC)因其罕见性和复杂的解剖结构,在预后评估方面面临重大挑战。本研究引入了一种将肾周脂肪(PRF)放射组学与临床因素相结合的新方法,以提高UTUC的预后准确性。该研究回顾性分析了103例行根治性肾输尿管切除术的UTUC患者。使用半自动分割方法从术前CT扫描中提取PRF放射组学特征。开发了三种预后模型:临床模型、放射组学模型和联合模型。使用一致性指数(C指数)、时间依赖性曲线下面积(AUC)和综合Brier评分评估模型性能。与放射组学模型(C指数:0.759,95%可信区间:0.678-0.840)和临床模型(0.653,95%可信区间:0.547-0.759)相比,联合模型表现出更好的性能(C指数:0.784,95%可信区间:0.707-0.861)。时间依赖性AUC分析显示,放射组学模型在短期预后方面具有特殊优势(12个月AUC:0.9281),而联合模型在长期预测方面表现出色(60个月AUC:0.8403)。关键的PRF放射组学特征显示出比传统临床因素更强的预后价值。PRF放射组学与临床数据的整合显著提高了UTUC的预后准确性。这种方法对肿瘤微环境提供了更细致入微的分析,有可能捕捉到传统成像无法看到的肿瘤侵袭早期迹象。半自动PRF分割方法在可重复性和易用性方面具有优势,便于潜在的临床应用。