Al Mopti Abdulrahman, Alqahtani Abdulsalam, Alshehri Ali H D, Li Chunhui, Nabi Ghulam
Centre for Medical Engineering and Technology, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.
Radiology Department, College of Applied Medical Sciences, Najran University, Najran 55461, Saudi Arabia.
Cancers (Basel). 2025 Apr 4;17(7):1220. doi: 10.3390/cancers17071220.
Upper tract urothelial carcinoma (UTUC) often presents with aggressive behaviour, demanding accurate preoperative assessment to guide management. Radiomics-based approaches have shown promise in extracting quantitative features from imaging, yet few studies have explored whether perirenal fat (PRF) radiomics can augment tumour-only models. A retrospective cohort of 103 UTUC patients undergoing radical nephroureterectomy was analysed. Tumour regions of interest (ROI) and concentric PRF expansions (10-30 mm) were segmented from computed tomography (CT) scans. Radiomic features were extracted using PyRadiomics, filtered by correlation and intraclass correlation coefficients, and integrated with clinical variables (e.g., age, BMI, multifocality). Multiple machine learning models, including MLPClassifier and CatBoost, were evaluated via repeated cross-validation. Performance was assessed using the area under the ROC curve (AUC), sensitivity, specificity, F1-score, and DeLong tests. The best tumour grade model (AUC = 0.961) merged tumour-derived features with a 10 mm PRF margin, exceeding PRF-only (AUC = 0.900) and tumour-only (AUC = 0.934) approaches. However, the improvement over tumour-only was not always statistically significant. For stage prediction, combining tumour and 15 mm PRF features yielded the top AUC of 0.852, surpassing the tumour-alone model (AUC = 0.802) and outperforming PRF-only (AUC ≤ 0.778). PRF features provided an additional predictive value for both grade and stage models. Integrating PRF radiomics with tumour-based analyses enhances predictive accuracy for UTUC grade and stage, suggesting that the tumour microenvironment contains complementary imaging cues. These findings, pending external validation, support the potential for radiomics-driven risk stratification and personalised treatment planning in UTUC.
上尿路尿路上皮癌(UTUC)通常具有侵袭性,需要准确的术前评估来指导治疗。基于放射组学的方法已显示出从影像学中提取定量特征的前景,但很少有研究探讨肾周脂肪(PRF)放射组学是否可以增强仅基于肿瘤的模型。对103例行根治性肾输尿管切除术的UTUC患者进行了回顾性队列分析。从计算机断层扫描(CT)图像中分割出肿瘤感兴趣区域(ROI)和同心PRF扩展区域(10 - 30毫米)。使用PyRadiomics提取放射组学特征,通过相关性和组内相关系数进行过滤,并与临床变量(如年龄、体重指数、多灶性)相结合。通过重复交叉验证评估了包括MLPClassifier和CatBoost在内的多种机器学习模型。使用ROC曲线下面积(AUC)、敏感性、特异性、F1分数和DeLong检验来评估性能。最佳肿瘤分级模型(AUC = 0.961)将肿瘤衍生特征与10毫米PRF边缘相结合,超过了仅基于PRF的模型(AUC = 0.900)和仅基于肿瘤的模型(AUC = 0.934)。然而,相对于仅基于肿瘤的模型的改善并不总是具有统计学意义。对于分期预测,结合肿瘤和15毫米PRF特征产生了最高的AUC为0.852,超过了仅基于肿瘤的模型(AUC = 0.802),并且优于仅基于PRF的模型(AUC≤0.778)。PRF特征为分级和分期模型都提供了额外的预测价值。将PRF放射组学与基于肿瘤的分析相结合可提高UTUC分级和分期的预测准确性,表明肿瘤微环境包含互补的成像线索。这些发现有待外部验证,支持了放射组学驱动的UTUC风险分层和个性化治疗规划的潜力。