Andor Minodora, Man Dana Emilia, Nistor Daciana Carmen, Buda Valentina, Dragan Simona
Discipline of Medical Semiotics II, Department V-Internal Medicine-1, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
Multidisciplinary Heart Research Centre, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
Biomedicines. 2024 Nov 19;12(11):2642. doi: 10.3390/biomedicines12112642.
BACKGROUND/OBJECTIVES: Predicting post-COVID-19 diabetes is crucial for enhancing patient care and public health. This study investigates the role of metabolic factors in predicting the glycemic outcomes in patients recovering from moderate to severe COVID-19.
We conducted a retrospective analysis of 135 patients without pre-existing diabetes, selected from a cohort of 1980 individuals hospitalized between January 2020 and December 2022. Metabolic parameters, including blood glucose, Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), Triglyceride/Glucose (TyG) index, and high-sensitivity C-reactive protein (hs-CRP), were assessed at discharge and followed up after 4 months (T4) and 12 months (T12).
Statistical analysis revealed significant correlations of initial glycemia, HOMA-IR, and hs-CRP with the subsequent glycemic levels at T4 and T12. Multiple regression analysis confirmed that initial glycemia, HOMA-IR, and hs-CRP were strong predictors of elevated glycemia, while the TyG index did not show a significant predictive value. Conventional diabetes risk factors, including body mass index (BMI) and lipid profiles, showed low predictive power for post-COVID-19 glycemia.
This research highlights the critical role of metabolic and inflammatory pathways in managing glycemic control in COVID-19 patients. Markers like blood glucose, HOMA-IR, and hs-CRP are significant predictors of blood glucose levels, while the TyG index appears less helpful in this context. Early, targeted interventions based on these markers can improve patient outcomes and reduce the risk of post-COVID-19 complications like diabetes.
背景/目的:预测新冠病毒感染后糖尿病对于改善患者护理和公共卫生至关重要。本研究调查了代谢因素在预测中度至重度新冠病毒感染康复患者血糖结局中的作用。
我们对135例无糖尿病史的患者进行了回顾性分析,这些患者选自2020年1月至2022年12月期间住院的1980例患者队列。在出院时以及4个月(T4)和12个月(T12)后进行随访,评估代谢参数,包括血糖、胰岛素抵抗稳态模型评估(HOMA-IR)、甘油三酯/葡萄糖(TyG)指数和高敏C反应蛋白(hs-CRP)。
统计分析显示,初始血糖、HOMA-IR和hs-CRP与T4和T12时的后续血糖水平存在显著相关性。多元回归分析证实,初始血糖、HOMA-IR和hs-CRP是血糖升高的有力预测指标,而TyG指数未显示出显著的预测价值。包括体重指数(BMI)和血脂谱在内的传统糖尿病危险因素对新冠病毒感染后血糖的预测能力较低。
本研究强调了代谢和炎症途径在新冠病毒感染患者血糖控制管理中的关键作用。血糖、HOMA-IR和hs-CRP等指标是血糖水平的重要预测指标,而在此背景下TyG指数似乎帮助较小。基于这些指标的早期、有针对性的干预措施可以改善患者预后,降低新冠病毒感染后糖尿病等并发症的风险。