Suppr超能文献

基于血清 microRNAs 定量检测肝脂肪变性百分比的非侵入性筛查方法的建立。

The Development of a Non-Invasive Screening Method Based on Serum microRNAs to Quantify the Percentage of Liver Steatosis.

机构信息

Unidad Mixta de Investigación en Hepatología Experimental, IIS Hospital La Fe, 46026 Valencia, Spain.

Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46010 Valencia, Spain.

出版信息

Biomolecules. 2024 Nov 8;14(11):1423. doi: 10.3390/biom14111423.

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is often asymptomatic and underdiagnosed; consequently, there is a demand for simple, non-invasive diagnostic tools. In this study, we developed a method to quantify liver steatosis based on miRNAs, present in liver and serum, that correlate with liver fat. The miRNAs were analyzed by miRNAseq in liver samples from two cohorts of patients with a precise quantification of liver steatosis. Common miRNAs showing correlation with liver steatosis were validated by RT-qPCR in paired liver and serum samples. Multivariate models were built using partial least squares (PLS) regression to predict the percentage of liver steatosis from serum miRNA levels. Leave-one-out cross validation and external validation were used for model selection and to estimate predictive performance. The miRNAseq results disclosed (a) 144 miRNAs correlating with triglycerides in a set of liver biobank samples ( = 20); and (b) 124 and 102 miRNAs correlating with steatosis by biopsy digital image and MRI analyses, respectively, in liver samples from morbidly obese patients ( = 24). However, only 35 miRNAs were common in both sets of samples. RT-qPCR allowed to validate the correlation of 10 miRNAs in paired liver and serum samples. The development of PLS models to quantitatively predict steatosis demonstrated that the combination of serum miR-145-3p, 122-5p, 143-3p, 500a-5p, and 182-5p provided the lowest root mean square error of cross validation (RMSECV = 1.1, -value = 0.005). External validation of this model with a cohort of mixed MASLD patients ( = 25) showed a root mean squared error of prediction (RMSEP) of 5.3. In conclusion, it is possible to predict the percentage of hepatic steatosis with a low error rate by quantifying the serum level of five miRNAs using a cost-effective and easy-to-implement RT-qPCR method.

摘要

代谢相关脂肪性肝病(MASLD)常无症状且诊断不足;因此,需要简单、非侵入性的诊断工具。本研究中,我们开发了一种基于miRNA 的肝脂肪定量方法,这些 miRNA 存在于肝脏和血清中,与肝脂肪相关。通过对两批患者肝脏样本的 miRNAseq 分析,对具有精确肝脂肪定量的 MASLD 患者进行了 miRNA 分析。通过 RT-qPCR 在配对的肝脏和血清样本中验证与肝脂肪相关的常见 miRNA。使用偏最小二乘(PLS)回归建立多元模型,根据血清 miRNA 水平预测肝脂肪百分比。留一法交叉验证和外部验证用于模型选择和预测性能估计。miRNAseq 结果显示:(a)在一组肝脏生物样本中,有 144 个 miRNA 与甘油三酯相关( = 20);(b)在肥胖症患者的肝脏样本中,通过活检数字图像和 MRI 分析,分别有 124 个和 102 个 miRNA 与脂肪变性相关( = 24)。然而,两组样本中只有 35 个 miRNA 是共同的。RT-qPCR 验证了 10 个 miRNA 在配对的肝脏和血清样本中的相关性。建立 PLS 模型定量预测脂肪变性表明,血清 miR-145-3p、122-5p、143-3p、500a-5p 和 182-5p 的组合提供了最低的交叉验证均方根误差(RMSECV = 1.1,-值 = 0.005)。用混合 MASLD 患者队列对该模型进行外部验证( = 25)显示预测均方根误差(RMSEP)为 5.3。总之,通过使用成本效益高且易于实施的 RT-qPCR 方法定量检测血清中 5 种 miRNA 的水平,可以以较低的误差率预测肝脂肪百分比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f0/11592063/8ec9277db008/biomolecules-14-01423-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验