Suppr超能文献

基于代谢组学的多元机器学习预测疾病严重程度的优势:以 COVID 为例。

Advantages of Metabolomics-Based Multivariate Machine Learning to Predict Disease Severity: Example of COVID.

机构信息

Inserm Unit Ischémie Reperfusion, Métabolisme et Inflammation Stérile en Transplantation (IRMETIST), UMR U1313, F-86073 Poitiers, France.

Faculty of Medicine and Pharmacy, University of Poitiers, F-86073 Poitiers, France.

出版信息

Int J Mol Sci. 2024 Nov 13;25(22):12199. doi: 10.3390/ijms252212199.

Abstract

The COVID-19 outbreak caused saturations of hospitals, highlighting the importance of early patient triage to optimize resource prioritization. Herein, our objective was to test if high definition metabolomics, combined with ML, can improve prognostication and triage performance over standard clinical parameters using COVID infection as an example. Using high resolution mass spectrometry, we obtained metabolomics profiles of patients and combined them with clinical parameters to design machine learning (ML) algorithms predicting severity (herein determined as the need for mechanical ventilation during patient care). A total of 64 PCR-positive COVID patients at the Poitiers CHU were recruited. Clinical and metabolomics investigations were conducted 8 days after the onset of symptoms. We show that standard clinical parameters could predict severity with good performance (AUC of the ROC curve: 0.85), using SpO2, first respiratory rate, Horowitz quotient and age as the most important variables. However, the performance of the prediction was substantially improved by the use of metabolomics (AUC = 0.92). Our small-scale study demonstrates that metabolomics can improve the performance of diagnosis and prognosis algorithms, and thus be a key player in the future discovery of new biological signals. This technique is easily deployable in the clinic, and combined with machine learning, it can help design the mathematical models needed to advance towards personalized medicine.

摘要

COVID-19 疫情导致医院饱和,凸显了早期患者分诊的重要性,以优化资源优先级。在此,我们的目标是测试高分辨率代谢组学与机器学习(ML)相结合,是否可以改善预后和分诊性能,以 COVID 感染为例。我们使用高分辨率质谱法获取患者的代谢组学图谱,并将其与临床参数相结合,设计用于预测严重程度(在此期间确定为患者护理期间需要机械通气)的机器学习(ML)算法。共招募了 64 名在普瓦捷 CHU 的 PCR 阳性 COVID 患者。在症状出现 8 天后进行临床和代谢组学研究。我们表明,标准临床参数可以很好地预测严重程度(ROC 曲线 AUC:0.85),其中 SpO2、第一呼吸频率、Horowitz 商和年龄是最重要的变量。然而,代谢组学的使用大大提高了预测的性能(AUC = 0.92)。我们的小规模研究表明,代谢组学可以提高诊断和预后算法的性能,因此是未来发现新生物信号的关键因素。该技术在临床上易于部署,并与机器学习相结合,可以帮助设计推进个性化医疗所需的数学模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc0e/11594300/b0d4b1741d51/ijms-25-12199-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验